
Image Acquisition Toolbox™
Adaptor Kit User's Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Image Acquisition Toolbox™ Adaptor Kit User's Guide
© COPYRIGHT 2005–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 2005 PDF only New for Version 1.0 (Release 14SP3)
March 2007 PDF only Revised for Version 1.0 (Release 2007a)
September 2007 PDF only Revised for Version 1.0 (Release 2007b)
March 2008 PDF only Revised for Version 1.0 (Release 2008a)
October 2008 PDF only Minor Revision for Version 1.0 (Release 2008b)
March 2009 PDF only Minor Revision for Version 1.0 (Release 2009a)
September 2009 PDF only Minor Revision for Version 1.0 (Release 2009b)
March 2010 PDF only Minor Revision for Version 1.0 (Release 2010a)
September 2010 PDF only Minor Revision for Version 1.0 (Release 2010b)
April 2011 PDF only Minor Revision for Version 1.0 (Release 2011a)
September 2011 PDF only Minor Revision for Version 1.0 (Release 2011b)
March 2012 PDF only Minor Revision for Version 1.0 (Release 2012a)
September 2012 PDF only Minor Revision for Version 1.0 (Release 2012b)
March 2013 PDF only Minor Revision for Version 1.0 (Release 2013a)
September 2013 PDF only Minor Revision for Version 1.0 (Release 2013b)
March 2014 PDF only Minor Revision for Version 1.0 (Release 2014a)
October 2014 PDF only Minor Revision for Version 1.0 (Release 2014b)
March 2015 PDF only Minor Revision for Version 1.0 (Release 2015a)
September 2015 PDF only Minor Revision for Version 1.0 (Release 2015b)
March 2016 PDF only Minor Revision for Version 1.0 (Release 2016a)
September 2016 PDF only Minor Revision for Version 1.0 (Release 2016b)
March 2017 PDF only Minor Revision for Version 1.0 (Release 2017a)
September 2017 PDF only Minor Revision for Version 1.0 (Release 2017b)
March 2018 PDF only Minor Revision for Version 1.0 (Release 2018a)
September 2018 PDF only Minor Revision for Version 1.0 (Release 2018b)
March 2019 PDF only Minor Revision for Version 1.0 (Release 2019a)
September 2019 PDF only Minor Revision for Version 1.0 (Release 2019b)
March 2020 PDF only Minor Revision for Version 1.0 (Release 2020a)
September 2020 Online only Minor Revision for Version 1.0 (Release 2020b)
March 2021 Online only Minor Revision for Version 1.0 (Release 2021a)

Getting Started
1

Custom Adaptors . 1-2
What Knowledge Is Required? . 1-3

Creating an Adaptor . 1-4
Staged Development Model . 1-4

Looking at the Demo Adaptor . 1-6
Finding the Demo Adaptor Source Files . 1-6
Viewing the Demo Adaptor Source Files . 1-7
Setting Breakpoints . 1-8
Building the Demo Adaptor . 1-8
Registering an Adaptor with the Toolbox . 1-8
Running the Demo Adaptor . 1-9

Setting Up Your Build Environment
2

Setting up a Build Environment on Windows Systems 2-2
Required Header Files and Libraries . 2-2
Using Environment Variables . 2-3
Creating an Adaptor Project Using Microsoft Visual C++ 2-3
Specifying Header File Locations . 2-4
Specifying Libraries and Library Paths . 2-5
Configuring Other Project Parameters . 2-5

Setting up a Build Environment on Linux and Macintosh Systems 2-7
Required Libraries and Include Files for Adaptor Development 2-7
Creating a Makefile Based on the Demo Adaptor Makefile 2-7

Providing Hardware Information
3

Using Adaptor Exported Functions . 3-2

Creating a Stub Adaptor . 3-4

Performing Adaptor and Device SDK Initialization 3-6
Example . 3-6

v

Contents

Specifying Device and Format Information . 3-7
Using Objects to Store Device and Format Information 3-7
Suggested Algorithm . 3-8
Storing Device Information . 3-9
Storing Format Information . 3-10
Example: Providing Device and Format Information 3-11

Defining Classes to Hold Device-Specific Information 3-13
Defining a Device or Format Information Class . 3-13
Storing Adaptor Data . 3-13

Unloading Your Adaptor DLL . 3-15
Example . 3-15

Returning Warnings and Errors to the MATLAB Command Line 3-16

Defining Your Adaptor Class
4

Defining Your Adaptor Class . 4-2

Using IAdaptor Abstract Class Virtual Functions . 4-3

Creating Stub Implementation of Your Adaptor Class 4-4

Identifying Video Sources . 4-7
Suggested Algorithm . 4-7

Instantiating an Adaptor Object . 4-8
Suggested Algorithm . 4-8
Implementing Your Adaptor Class Constructor . 4-8
Implementing Your Adaptor Class Destructor . 4-9

Acquiring Image Data
5

Acquiring Image Data . 5-2
User Scenario . 5-2
Triggering . 5-2
Overview of Virtual Functions Used to Acquire Data 5-2

Specifying the Format of the Image Data . 5-5
Specifying Image Dimensions . 5-5
Specifying Frame Type . 5-6

Opening and Closing Connection with a Device . 5-9
Suggested Algorithm for openDevice() . 5-9
Suggested Algorithm for closeDevice() . 5-11

vi Contents

Starting and Stopping Image Acquisition . 5-13
Suggested Algorithm for startCapture() . 5-13
Suggested Algorithm for stopCapture() . 5-14

Implementing the Acquisition Thread Function . 5-16
User Scenario . 5-16
Suggested Algorithm . 5-16
Example . 5-18

Supporting ROIs . 5-20
Implementing Software ROI . 5-20
Implementing Hardware ROI . 5-21

Supporting Hardware Triggers . 5-22
Example . 5-22

Using Critical Sections . 5-24
Understanding Critical Sections . 5-24
Example: Using a Critical Section . 5-24

Specifying Device Driver Identification Information 5-26
User Scenario . 5-26
Example . 5-26

Defining Device-Specific Properties
6

Defining Device-Specific Properties . 6-2
User Scenario . 6-2
Suggested Algorithm . 6-2

Creating Device Properties . 6-4
Selecting the Property Creation Function . 6-4
Creating Property Help . 6-5
Example getDeviceAttributes() Function . 6-5

Defining Hardware Trigger Configurations . 6-7

Implementing Get and Set Support for Device-Specific Properties 6-8
Setting Up Get Listeners in Your Adaptor . 6-8
Setting Up Set Listeners in Your Adaptor . 6-11

Storing Adaptor Information in an IMDF File
7

Using the IMDF Markup Language . 7-2
User Scenario . 7-2
Elements of the IMDF Markup Language . 7-2

vii

Creating an IMDF File: Toplevel Elements . 7-4

Specifying Help in an IMDF File . 7-5
User Scenario: Viewing Property Help . 7-6
Creating AdaptorHelp Nodes . 7-7

Specifying Device Information . 7-9
Example: Device Node . 7-10

Specifying Property Information . 7-12
Specifying Property Element Attributes . 7-12

Specifying Format Information . 7-15

Specifying Hardware Trigger Information . 7-17
Specifying Trigger Sources . 7-17
Specifying Trigger Conditions . 7-18

Specifying Video Sources . 7-19

Defining and Including Sections . 7-20

Test Suite for Adaptor Writers
8

Testing Adaptors or Hardware . 8-2

Creating a Stub Adaptor Test Procedure . 8-3

Specifying Format of Image Data Test Procedure . 8-6

Implementing the Acquisition Thread Function Test Procedure 8-7

Supporting ROIs Test Procedure . 8-8

Specifying Device Driver Identification Information Test Procedure 8-9

Using the Test Suite Functions and Properties . 8-11
Test Suite Properties . 8-11
Test Suite Functions . 8-11
Test Suite Example . 8-14

viii Contents

Getting Started

This section introduces the Image Acquisition Toolbox Adaptor Kit.

• “Custom Adaptors” on page 1-2
• “Creating an Adaptor” on page 1-4
• “Looking at the Demo Adaptor” on page 1-6

1

Custom Adaptors
The Image Acquisition Toolbox Adaptor Kit is a C++ framework that you can use to create an
adaptor. A C++ framework is a set of classes that work together to create a particular application. In
a framework, the design of the software is already defined. With the adaptor framework, you subclass
the framework classes and implement the required member functions to flesh out the design to
support your particular hardware.

An adaptor is a dynamic link library (DLL), called a shared library on Linux systems, that implements
the connection between the Image Acquisition Toolbox engine and a device driver via the vendor's
software development kit (SDK).

You develop an adaptor to support new hardware. Adaptors enable the dynamic loading of support for
hardware without requiring recompilation and linking of the toolbox. Using an adaptor to add
hardware support gives you the advantage of having multiple prepackaged features such as data
logging, triggering, and a standardized interface to the image acquisition device.

This diagram shows the relationship of an adaptor to the toolbox engine and a device driver.

Relationship of Adaptor to Toolbox Components

1 Getting Started

1-2

What Knowledge Is Required?
To build an adaptor, you should have a working knowledge of

• C++
• The functionality of your hardware device, and its associated application programming interface

(API)
• Image Acquisition Toolbox concepts, functionality, and terminology as described in the Image

Acquisition Toolbox User's Guide documentation

 Custom Adaptors

1-3

Creating an Adaptor
To create an adaptor, you must implement the C++ routines and the classes required by the adaptor
framework. The following outlines one way to develop an adaptor that divides the task into several
smaller tasks, called stages. This staged development model has been shown to be an effective way to
create an adaptor.

• “Stage 1: Familiarize Yourself with the Adaptor Kit and Device SDK” on page 1-4
• “Stage 2: Set Up Your Build Environment” on page 1-4
• “Stage 3: Provide Hardware Information” on page 1-4
• “Stage 4: Define Your Adaptor Class” on page 1-5
• “Stage 5: Implement Virtual Functions in Adaptor Class” on page 1-5
• “Stage 6: Choose Which Device Properties to Expose” on page 1-5

Staged Development Model
Stage 1: Familiarize Yourself with the Adaptor Kit and Device SDK

Before you start developing an adaptor, you must gather information about the device (or devices) to
help you make design decisions.

• Familiarize yourself with adaptors and adaptor development by looking at the demo adaptor which
is included with the adaptor kit — see “Looking at the Demo Adaptor” on page 1-6

• Familiarize yourself with your device's SDK. Devices provide the tools you need to access and
control them programmatically. You must learn your device's requirements for initialization,
startup, and acquiring data, and the SDK functions used to perform these tasks.

• Determine what device or devices you want to support with your adaptor. You can create an
adaptor to support one particular device, a group of devices offered by a particular vendor, or a
group of devices that all support a common interface. You must also determine the formats
supported by the device and the properties of the device that you want to make available to users
of your adaptor.

Stage 2: Set Up Your Build Environment

You must set up the required adaptor build environment, which includes specifying the names and
locations of required header files and libraries. “Setting up a Build Environment on Windows
Systems” on page 2-2 provides this information.

Stage 3: Provide Hardware Information

In this stage, you start development by creating a stub implementation of your adaptor. Every adaptor
must provide the toolbox with information about the device (or devices) it makes available to users.
As a first step, you define the labels you want to use to identify the devices available through your
adaptor and the formats they support, and you implement the adaptor functions that return this
information to users. The toolbox displays these labels to users who must specify the device and
format they want to use for an acquisition.

After building this stub implementation of your adaptor DLL and registering it with the toolbox, you
can use the imaqhwinfo function and verify that the toolbox can find your adaptor and load it. For
more information about this stage, see “Using Adaptor Exported Functions” on page 3-2.

1 Getting Started

1-4

Stage 4: Define Your Adaptor Class

In this stage, you define your adaptor class and add a stub implementation of this class to your
adaptor project. Every adaptor must define an adaptor class that is a subclass of the adaptor kit
IAdaptor class.

After building your adaptor DLL, a call to the videoinput function instantiates a video input object
with your adaptor. For more information, see “Defining Your Adaptor Class” on page 4-2.

Stage 5: Implement Virtual Functions in Adaptor Class

In this stage, you flesh out the stub implementations of the virtual functions in your adaptor class.
After completing this stage, you will be able to acquire data from your device and bring it into the
MATLAB® workspace.

In addition, in this step you can also implement support for defining a region-of-interest (ROI) and for
using hardware triggering, if your device supports this capability. For more information, see
“Acquiring Image Data” on page 5-2.

Stage 6: Choose Which Device Properties to Expose

In this stage, you decide which properties of the device you want to expose to toolbox users. You
make this determination by reading the device's SDK documentation, determining its capabilities,
and deciding which capabilities toolbox users will expect to configure. Once you decide to expose a
property, you must decide on a name for the property, determine its data type, and, optionally, the
range of valid values. As an alternative, you can define device-specific properties in an image device
definition file (IMDF). For more information, see “Defining Device-Specific Properties” on page 6-2.

 Creating an Adaptor

1-5

Looking at the Demo Adaptor
A good way to get a quick introduction to adaptors and adaptor development is by looking at the
demo adaptor that is included with the Image Acquisition Toolbox Adaptor Kit. The demo adaptor is a
functioning adaptor that does not require any hardware. You can build the demo adaptor and run it to
get familiar with how an adaptor works.

• “Finding the Demo Adaptor Source Files” on page 1-6
• “Viewing the Demo Adaptor Source Files” on page 1-7
• “Setting Breakpoints” on page 1-8
• “Building the Demo Adaptor” on page 1-8
• “Registering an Adaptor with the Toolbox” on page 1-8
• “Running the Demo Adaptor” on page 1-9

Finding the Demo Adaptor Source Files
The demo adaptor C++ source files reside in the following folder:

$MATLAB\toolbox\imaq\imaqadaptors\kit\demo\

The following table lists all the files in the demo folder in alphabetical order, with brief descriptions.

Source File Description
DemoAdaptor.cpp Demo adaptor class implementation
DemoAdaptor.h Demo adaptor class definition
DemoDeviceFormat.cpp Implementation of class that holds device format information
DemoDeviceFormat.h Definition of class that holds device format information
DemoPropListener.cpp Implementation of class that notifies demo adaptor when the

value of a device property changes
DemoPropListener.h Definition of class that notifies demo adaptor when the value

of a device property changes
DemoSourceListener.cpp Implementation of class that listens for changes in the

selected video source
DemoSourceListener.h Definition of class used to listen for changes in the selected

video source
DemoTimestampGetFcn.cpp Implementation of class that provides a custom get function

for the timestamp properties.
DemoTimestampGetFcn.h Definition of class that provides a custom get function for the

timestamp properties.
mwdemoimaq.cpp Implementation of the five functions that every adaptor must

export.
mwdemoimaq.dll Demo adaptor library. This is the compiled and linked

Dynamic Link Library (DLL) that implements the demo
adaptor.

1 Getting Started

1-6

Source File Description
mwdemoimaq.h Header file that defines the five functions that every adaptor

must export
mwdemoimaq.imdf Demo adaptor image device file (IMDF) that contains property

definitions
mwdemoimaq.vcproj Microsoft® Visual C++® project file for the demo adaptor

Viewing the Demo Adaptor Source Files
This section describes a suggested order in which you should look at the demo adaptor source files.

mwdemoimaq.h

A good place to start looking at the demo adaptor is to open the mwdemoimaq.h file. This file defines
the five functions that every adaptor must export. The toolbox engine calls these functions to get
information about supported hardware, instantiate a video input object, and acquire data.
Implementing these functions is typically the first step an adaptor writer takes. This header file
contains comments that explain the purpose of each function.

mwdemoimaq.cpp

After seeing the definition of the adaptor exported functions, see how they are implemented in the
corresponding C++ implementation file, mwdemoimaq.cpp.

DemoAdaptor.h

After viewing the exported functions, take a look at the definition of the DemoAdaptor class in
DemoAdaptor.h. The adaptor class is a subclass of the IAdaptor class, which defines the virtual
functions an adaptor must implement. This header file contains comments that explain the purpose of
each member function.

DemoAdaptor.cpp

After seeing the definition of the adaptor class, look at the implementation of the class in the
DemoAdaptor.cpp file. This file contains the acquisition thread function which is the main frame
acquisition loop. This is where the adaptor connects to the device and acquires image frames.

Other Demo Adaptor Files

The demo directory contains other files that implement optional adaptor kit capabilities.

For example, the DemoDeviceFormat.h and corresponding .cpp files illustrate one way to store
device-specific format information using adaptor data. You define a class that is a subclass of the
IMAQInterface class to hold the information. See “Defining Classes to Hold Device-Specific
Information” on page 3-13 for more information.

The DemoPropListener.h and corresponding .cpp files and the DemoSourceListener.h
and .cpp files illustrate how your adaptor can get notified if a user changes the setting of a property.
See “Implementing Get and Set Support for Device-Specific Properties” on page 6-8 for more
information.

 Looking at the Demo Adaptor

1-7

Setting Breakpoints
You can use debugger breakpoints to examine which adaptor functions are called when users call
toolbox functions, such as imaqhwinfo, videoinput, start, and stop. The following table lists
places in the demo adaptor where you can set a breakpoints.

MATLAB Command Breakpoint
imaqhwinfo initializeAdaptor()
imaqreset uninitializeAdaptor()
imaqhwinfo(adaptorname) getAvailHW()
videoinput getDeviceAttributes()

createInstance()
imaqhwinfo(obj) getDriverDescription()

getDriverVersion()

getMaxWidth()

getMaxHeight()

getFrameType()
videoinput getNumberOfBands()
start openDevice()
start or trigger, if manual trigger startCapture()
stop stopCapture()

closeDevice()

Building the Demo Adaptor
After familiarizing yourself with the demo adaptor source files, build the demo adaptor. There is a
pre-built version of the demo adaptor in matlabroot/toolbox/imaq/imaqadaptors/kit/demo/
$ARCH. The Visual Studio project file and the makefile build the adaptor file in a subfolder of this
folder.

Note To build the demo adaptor on Windows, you must have an environment variable named MATLAB
defined on your system. Set the value of this environment variable to the location of your MATLAB
installation directory.

Registering an Adaptor with the Toolbox
After creating an adaptor, you must inform the Image Acquisition Toolbox software of its existence by
registering it with the imaqregister function. This function tells the toolbox where to find third-
party adaptor libraries. You only need to register your adaptor once. The toolbox stores adaptor
location information in your MATLAB preferences.

1 Getting Started

1-8

Note Because the toolbox caches adaptor information, you might need to reset the toolbox, using
imaqreset, before a newly registered adaptor appears in the imaqhwinfo listing.

For example, the following code registers the demo adaptor with the toolbox using the
imaqregister function, where <your_directory> represents the name of the directory where you
created the demo adaptor.

imaqregister('<your_directory>\mwdemoimaq.dll');

Running the Demo Adaptor
Start MATLAB and call the imaqhwinfo function. You should be able to see the demo adaptor
included in the adaptors listed in the InstalledAdaptors field. For example, on a Windows system,
imaqhwinfo returns the following.

ans =

 InstalledAdaptors: {'demo' 'matrox' 'winvideo'}
 MATLABVersion: '7.12 (R2011a)'
 ToolboxName: 'Image Acquisition Toolbox'
 ToolboxVersion: '4.1 (R2011a)'

Create a video input object with the demo adaptor.

vid = videoinput('demo');

Get a preview of the data being returned by the demo adaptor using the preview function. Note that
the demo adaptor generates a grayscale pattern to mimic the data returned by a real image
acquisition device. The demo adaptor does not connect to an actual device.

preview(vid);

 Looking at the Demo Adaptor

1-9

Preview Windows Containing Demo Adaptor Data

1 Getting Started

1-10

Setting Up Your Build Environment

This chapter describes the libraries and include files you need to build an adaptor on Windows, Linux,
or Macintosh systems. The chapter also provides details about setting up the build environment in
Microsoft Visual C++.

• “Setting up a Build Environment on Windows Systems” on page 2-2
• “Setting up a Build Environment on Linux and Macintosh Systems” on page 2-7

2

Setting up a Build Environment on Windows Systems
Setting up the build environment involves specifying the header files and libraries that you need to
create an adaptor. For those familiar with their IDE environment, see the following sections for lists
of these required include files and libraries. This section also describes how to create an environment
variable that you can use to specify the MATLAB installation folder. The header file and library paths
use this environment variable. For detailed instructions on setting up your build environment in the
Microsoft Visual C++ development environment, see “Creating an Adaptor Project Using Microsoft
Visual C++” on page 2-3.

In this section...
“Required Header Files and Libraries” on page 2-2
“Using Environment Variables” on page 2-3
“Creating an Adaptor Project Using Microsoft Visual C++” on page 2-3
“Specifying Header File Locations” on page 2-4
“Specifying Libraries and Library Paths” on page 2-5
“Configuring Other Project Parameters” on page 2-5

Note Users of Microsoft Visual C++ should be aware that there are certain project parameters that
they must set. See “Configuring Other Project Parameters” on page 2-5.

Required Header Files and Libraries
The following table lists the locations of the header files and libraries that you need to build an
adaptor.

Note You must also specify the location of the header files and libraries required by your device.
Read your device's SDK documentation to get this information.

Header File and
Libraries

Location

Adaptor kit header files $(MATLAB)\toolbox\imaq\imaqadaptors\kit\includea

Image Acquisition
Toolbox engine library

$(MATLAB)\toolbox\imaq\imaqadaptors\kit\lib\<ARCH>\release
\imaqmex.lib

a. MATLAB is an environment variable that contains the name of your MATLAB installation folder.

• For information about defining environment variables, see “Using Environment Variables” on page
2-3.)

• To learn how to specify header files in Microsoft Visual C++, see “Specifying Header Files in
Microsoft Visual C++” on page 2-4.

• To learn how to specify the libraries in Microsoft Visual C++, see “Specifying Libraries and
Library Paths” on page 2-5.

2 Setting Up Your Build Environment

2-2

Using Environment Variables
To create an environment variable on your Windows® system that specifies your MATLAB installation
folder, follow this procedure:

1 Open the System Properties dialog box in Windows Control Panel: Control Panel > System and
Security > System.

2 In the System Control Panel, click the Advanced system settings option.
3 On the Advanced tab, click the Environment Variables button.
4 In the Environment Variables dialog box, in the User variables section, click New to create an

environment variable.
5 In the New User Variable dialog box, assign the name MATLAB to the variable and set the value of

the variable to your MATLAB installation folder path. Click OK.
6 Click OK in the Environment Variables dialog box, and then in the System Properties dialog box.

Note If Microsoft Visual C++ is running when you create this variable, you must restart it.

Creating an Adaptor Project Using Microsoft Visual C++
As the first step toward building an adaptor, open Microsoft Visual C++ and create a new project.

Note It is strongly recommended that you use a version of Microsoft Visual Studio®. For information
about supported versions, see the MATLAB column in the table: https://www.mathworks.com/support/
compilers.html.

1 Set up any required environment variables—see “Using Environment Variables” on page 2-3.
2 Start Microsoft Visual C++.
3 On the Start Page, click New Project.... Visual Studio opens the New Project dialog box. You

can also open this dialog box from the File > New > Project menu.
4 In the New Project dialog box:

• Expand Visual C++, under Installed Templates, if needed, and select Win32.
• Select Win32 Project.
• Enter the name you want to assign to the project in the Name field and specify where you

want to locate the project in the Location field.

You can give your adaptor project any name. A convention used by the toolbox is to name
adaptors as follows:

vendor_name + imaq

where you replace the character vector vendor_name with something appropriate to your
project.

• Click OK. Visual C++ opens the Win32 Application Wizard.
5 In the Win32 Application Wizard, click Application Settings.

 Setting up a Build Environment on Windows Systems

2-3

https://www.mathworks.com/support/compilers.html
https://www.mathworks.com/support/compilers.html

6 On the Application Settings page, select DLL from the list of application types and select Empty
project from the Additional options section. Click Finish to create the project.

After you create the project, close the Start Page. Visual C++ displays the project in its Solution
Explorer, with separate folders for source files, header files, and other project resources.

Recompiling with New Versions of the Image Acquisition Toolbox Software

After you have created an adaptor, you generally only need to recompile it for use with new major
versions of the Image Acquisition Toolbox software. Adaptor writers should recompile when a major
update is released, such as Image Acquisition Toolbox Version 4.0. If your adaptor works in one
version but not in the new version of the toolbox, try recompiling and relinking to see if that resolves
the issue.

Minor updates of the toolbox generally do not include changes to the adaptor kit, so adaptor writers
generally will not need to recompile their adaptors.

Adding the Adaptor Kit Project to Your Solution

When you create a project, Microsoft Visual C++ automatically creates a solution that contains your
project. As a convenience, while you are developing your adaptor, you might want to add the adaptor
kit project to your solution to make it easier to refer to adaptor kit files. Adding the adaptor kit
project to your solution does not affect the compilation or linkage of your adaptor DLL.

To add the adaptor kit project to your solution, go to the File > Add > Existing Project menu. In the
Add Existing Project dialog box, open the following project file,

matlabroot\toolbox\imaq\imaqadaptors\kit\imaqadaptorkit.vcxproj

where matlabroot represents your MATLAB installation folder.

Specifying Header File Locations
Before you can compile your adaptor, you must specify the locations of the header files required by
the adaptor kit and by your device's SDK. For a list of the header files required by the adaptor kit, see
“Setting up a Build Environment on Windows Systems” on page 2-2. The following section describes
how to specify these header file locations in the Microsoft Visual C++ environment.

Note The examples in the following section use environment variables. For more information, see
“Using Environment Variables” on page 2-3.

Specifying Header Files in Microsoft Visual C++

To specify the locations of the adaptor kit header files in Microsoft Visual C++, follow these
instructions:

1 Open the Property Pages dialog box: Projects > Properties.
2 Expand Configuration Properties and select VC++ Directories.

Then select Include Directories and choose Edit from the menu associated with that row.
3 Add the locations of adaptor kit header files and the header files required by your device's SDK

to the list of folders displayed, each on a separate line.

2 Setting Up Your Build Environment

2-4

$(MATLAB)\toolbox\imaq\imaqadaptors\kit\include

In this example, $(MATLAB) dereferences the environment variable MATLAB, which is set to the
name of your installation folder. (See “Using Environment Variables” on page 2-3 for more
information.)

4 After specifying the header file folders, click OK.

Specifying Libraries and Library Paths
Before you can create your adaptor DLL, you must specify the libraries required by the adaptor kit
and by your device's SDK. For a list of required libraries, see “Setting up a Build Environment on
Windows Systems” on page 2-2. The following sections describes how to specify these libraries and
library paths in Microsoft Visual C++.

Specifying Library Locations in Microsoft Visual C++

1 Open the Property Pages dialog box (if it is not already open): Projects > Properties.
2 Change the Configuration setting (at the top of the dialog box) to All Configurations.
3 Expand Configuration Properties and then expand Linker. Select General and, on this page,

select Additional Library Directories and click Edit from the menu associated with that row.
4 Add the locations of adaptor kit libraries and the libraries required by your device's SDK in the

Additional Library Directories field. Use a semicolon to separate the folders.

This example adds this line to the field:
$(MATLAB)\toolbox\imaq\imaqadaptors\kit\lib\<ARCH>\release

In the example,$(MATLAB) dereferences the environment variable MATLAB, which is set to the
name of your installation folder — see “Using Environment Variables” on page 2-3. You must
replace <ARCH> with the name of an architecture-specific folder, such as win64.

Specifying Library Names in Microsoft Visual C++

To specify the library names, follow this procedure.

1 Open the Property Pages dialog box (if you do not already have it open): Projects > Properties.
2 In the Property Pages dialog box for your project, expand Configuration Properties and then

expand Linker. Select the Input category and, on this page, select Additional Dependencies
and click Edit.

3 Specify the names of the adaptor kit libraries and the names of the libraries required by your
device's SDK. Use spaces to separate the names of the libraries. The following shows the adaptor
kit libraries.

imaqmex.lib
4 Click OK.

Configuring Other Project Parameters
In addition to specifying the header files and libraries, an adaptor project requires these additional
settings. If you do not set these parameters, your adaptor might encounter run-time problems.

 Setting up a Build Environment on Windows Systems

2-5

1 Add an empty source file to your project. To set the values of these additional properties, your
project must contain files. To create a source file, follow this procedure:

a Select File > New > File.
b In the New File dialog box, select Visual C++.
c Select C++ File (.cpp) and then click Open.
d Add the new source file to your project. From the File menu, select Move Source1.cpp into

and select the name of your project. Accept the default file name for now; you can always
change it later.

2 Open the Property Pages for your project by right-clicking on your project in the Solution
Explorer and choosing Properties, or by selecting Properties from the Project menu.

3 In the Property Pages dialog box, open C/C++ and select Code Generation. On the Code
Generation page, set the following values.

Field Setting
Enable C++ Exceptions Yes with Extern C functions (/EHs)
Runtime library Multi-threaded DLL (/MD)
Security Check Disable Security Check (/GS-)

4 In the Property Pages dialog box, under C/C++, select Language. On the Language page, set
the Enable Run-time Type Information field to Yes (/GR).

5 In the Property Pages dialog box, under C/C++, select Command Line and specify the following
compiler flag.

/EHs

Click OK to close the Property Pages dialog box.

2 Setting Up Your Build Environment

2-6

Setting up a Build Environment on Linux and Macintosh
Systems

In this section...
“Required Libraries and Include Files for Adaptor Development” on page 2-7
“Creating a Makefile Based on the Demo Adaptor Makefile” on page 2-7

Setting up the build environment on Linux and Macintosh systems involves specifying the include file
paths, library path, and libraries to link against to create an adaptor. See “Required Libraries and
Include Files for Adaptor Development” on page 2-7 for a list of the files and paths you need.

The adaptor kit includes a makefile that builds the adaptor kit demo adaptor on Linux and Macintosh
systems. You can use this demo makefile, with only slight modifications, to create a makefile that
builds your own adaptor. See “Creating a Makefile Based on the Demo Adaptor Makefile” on page 2-
7 for more information.

Required Libraries and Include Files for Adaptor Development
The following table lists the include file paths required to build an adaptor on Linux and Macintosh
systems.

Note You must also specify the location of the header files and libraries required by your device's
SDK. Read the documentation that came with the device's SDK to get this information.

Header Files and
Libraries

Location

Adaptor kit header files $(MATLAB)/toolbox/imaq/imaqadaptors/kit/includea

Image Acquisition
Toolbox engine library

Linux: $(MATLAB)/bin/<ARCH>/libmwimaqmex.so

Mac: $(MATLAB)/bin/<ARCH>/libmwimaqmex.dylib
a. MATLAB is an environment variable that contains the name of your MATLAB installation folder.

Creating a Makefile Based on the Demo Adaptor Makefile
To create a makefile to build your adaptor based on the demo adaptor makefile, follow these
instructions.

1 Make a copy of the adaptor kit demo makefile and put it in your adaptor development folder. For
example, if your adaptor development folder is /home/my_folder/my_adaptor, you might
execute this command at the system prompt:
cd /home/my_folder/my_adaptor

cp $(MATLAB_ROOT)/toolbox/imaq/imaqadaptors/kit/demo/makefile my_makefile

where MATLAB_ROOT is your MATLAB installation folder.
2 Open your copy of the makefile in any text editor.
3 Specify the folder where you want to create your adaptor by setting the value of the

ADAPTOR_DIR variable. By default, the demo adaptor makefile puts the adaptor in a subfolder of

 Setting up a Build Environment on Linux and Macintosh Systems

2-7

your development folder called build, but you can put your adaptor in any folder. When you are
finished creating your adaptor, register it with the Image Acquisition Toolbox by using the
imaqregister function.

4 Specify the location of your MATLAB installation folder by setting the value of the MATLAB_ROOT
variable. You can specify a relative path or an absolute path.

5 Specify any libraries required by your hardware device's SDK by setting the value of the LIBS
variable. The demo adaptor makefile already specifies the library required by the adaptor kit:
libmwimaqmex. The makefile drops the “lib” prefix and the platform-specific file extension,
such as .so, for these libraries because the linker does not require them.

6 Specify any include file folders required by your hardware device's SDK by setting the value of
the INCLUDE_DIRS variable. The demo adaptor makefile already specifies the include folders
required by the adaptor kit.

7 Specify the name you want to give your adaptor by setting the value of the RESULT variable. The
makefile builds the demo adaptor, so it uses the naming convention for a MathWorks adaptor,
using the “mw” prefix. Do not use this convention for the name of your adaptor. The line you
modify depends on your development platform:

Platform Line
Number

Change

Linux 69 Specify the name, giving it the .so file extension.
Macintosh 90 Specify the name, giving it the .dylib file extension.

8 Save the makefile.

After you create your makefile, use it to build your adaptor, as in the following example:

make -f my_makefile

2 Setting Up Your Build Environment

2-8

Providing Hardware Information

This chapter describes how an adaptor provides the toolbox engine with information about the image
acquisition device (or devices) available on a user's system. After completing the tasks outlined in this
chapter, you will be able to create your adaptor DLL, register it with the toolbox, and see it included
in the list of available adaptors returned by imaqhwinfo.

• “Using Adaptor Exported Functions” on page 3-2
• “Creating a Stub Adaptor” on page 3-4
• “Performing Adaptor and Device SDK Initialization” on page 3-6
• “Specifying Device and Format Information” on page 3-7
• “Defining Classes to Hold Device-Specific Information” on page 3-13
• “Unloading Your Adaptor DLL” on page 3-15
• “Returning Warnings and Errors to the MATLAB Command Line” on page 3-16

3

Using Adaptor Exported Functions
The Image Acquisition Toolbox engine requires that every adaptor export five functions. The toolbox
calls these functions to communicate with the device and acquire data. One of your primary tasks as
an adaptor writer is to provide implementations of these functions. The following table lists these five
exported functions with pointers to sections that provide more detail about how to implement the
function. The Demo adaptor included with the Image Acquisition Toolbox software contains sample
implementations of these functions in the file mwdemoimaq.cpp.

Export Function Purpose
initializeAdaptor() Performs any initialization required by your adaptor or your device's SDK.

See “Performing Adaptor and Device SDK Initialization” on page 3-6.
getAvailHW() Provides the toolbox engine with information about the device (or devices)

available through your adaptor
getDeviceAttributes() Specifies the video source, device-specific properties, and hardware trigger

information, if supported. See “Defining Device-Specific Properties” on page
6-2.

createInstance() Instantiates an object of a C++ class that represents the communication
between the toolbox and the device.

Note: Because you cannot create a stub of this function until you define an
adaptor class, this function is described in “Defining Your Adaptor Class” on
page 4-2.

uninitializeAdaptor() Performs any cleanup required by your adaptor and unloads the adaptor DLL.
See “Unloading Your Adaptor DLL” on page 3-15.

The following figure shows the flow of control between the MATLAB command line, the toolbox
engine, and the exported adaptor functions. Note that the figure does not show how the adaptor
communicates with the device's SDK to get information. This varies with each device's SDK.

3 Providing Hardware Information

3-2

Flow of Control Among MATLAB, Toolbox Engine, and Adaptor

 Using Adaptor Exported Functions

3-3

Creating a Stub Adaptor
The easiest way to start building an adaptor is to create a stub implementation, compile and link it,
and then test your work. This method can be effective because it provides immediate results and lets
you verify that your build environment is setup properly.

This section shows a stub implementations of an adaptor that you can copy and paste into a file in
your adaptor Microsoft Visual C++ project. After compiling and linking this code, you can see your
adaptor included in the list of available adaptors returned by the imaqhwinfo function.

Note You will not be able to instantiate an object of your adaptor class, however. That is described in
“Defining Your Adaptor Class” on page 4-2.

To create a stub adaptor, follow this procedure:

1 Add a C++ source file to the adaptor C++ project. See “Setting up a Build Environment on
Windows Systems” on page 2-2 for information about creating an adaptor C++ project. This
source file will hold your implementations of your adaptor's exported C++ functions. You can
give this file any name. This example uses the name of the adaptor for this file, with the
character vector "_exported_fcns" appended to it, mydevice_exported_fcns.cpp

2 Copy the following lines of C++ code into this new file. This code provides stub implementations
of the required adaptor exported functions. Note that you must include the adaptor kit header
file mwadaptorimaq.h. This header file includes all other required adaptor kit header files. The
getDeviceAttributes() stub defines a video source—see “Identifying Video Sources” on page
4-7 for more information.

#include "mwadaptorimaq.h"

void initializeAdaptor(){

}
void getAvailHW(imaqkit::IHardwareInfo* hardwareInfo){

}

void getDeviceAttributes(const imaqkit::IDeviceInfo* deviceInfo,
 const char* formatName,
 imaqkit::IPropFactory* devicePropFact,
 imaqkit::IVideoSourceInfo* sourceContainer,
 imaqkit::ITriggerInfo* hwTriggerInfo){

 // Create a video source
 sourceContainer->addAdaptorSource("MyDeviceSource", 1);

}

imaqkit::IAdaptor* createInstance(imaqkit::IEngine* engine, const
 imaqkit::IDeviceInfo* deviceInfo, const
 char* formatName){

 imaqkit::IAdaptor* adaptor = NULL;
 return adaptor;
}

3 Providing Hardware Information

3-4

void uninitializeAdaptor(){

}
3 Build the adaptor DLL. Select the Build Solution option on the Build menu.
4 Start the MATLAB software.
5 Tell the toolbox where to find this new adaptor using the imaqregister function. See

“Registering an Adaptor with the Toolbox” on page 1-8 for more information. You only need to
perform this step once.

6 Call the imaqhwinfo function. Note that the stub adaptor, named mydeviceimaq, is included in
the list of available adaptors returned.

imaqhwinfo

ans =

 InstalledAdaptors: {'demo' 'mydeviceimaq' 'winvideo'}
 MATLABVersion: '7.12 (R2011a)'
 ToolboxName: 'Image Acquisition Toolbox'
 ToolboxVersion: '4.1 (R2011a)'

To get more information about the stub adaptor, call imaqhwinfo again, this time specifying the
name of the adaptor.

Note At this point in your adaptor development, the DeviceIDs field and the DeviceInfo
fields are empty.

imaqhwinfo('mydeviceimaq')

ans =

 AdaptorDllName: 'C\My_Adaptor\mydeviceimaq.dll'
 AdaptorDllVersion: '4.1 (R2011a)'
 AdaptorName: 'mydeviceimaq'
 DeviceIDs: {1x0 cell}
 DeviceInfo: [1x0 struct]

 Creating a Stub Adaptor

3-5

Performing Adaptor and Device SDK Initialization
Every adaptor must include an initializeAdaptor() function. In this function, you should
perform any initialization required by your adaptor or your device's SDK. Check the documentation
that came with your device to find out what, if any, initialization the SDK requires.

For example, some device SDKs provide a function that loads required DLLs into memory. Not every
device's SDK requires initialization; however, every adaptor must include the
initializeAdaptor() function, even if it is an empty implementation.

Note You do not perform device initialization in this function. For information about performing
device initialization, see “Opening and Closing Connection with a Device” on page 5-9.

Example
As defined by the adaptor kit, the initializeAdaptor() function accepts no arguments and does
not return a value. The following example implements an empty initializeAdaptor() function.

void initializeAdaptor()
{
 // Perform initialization required by adaptor or device SDK.

}

3 Providing Hardware Information

3-6

Specifying Device and Format Information
Every adaptor must include a getAvailHW() function. In this function, you provide the toolbox with
information about the device (or devices) that are currently connected to the user's system. An
adaptor can represent one particular device, multiple devices supported by a particular vendor, or a
class of devices. For example, the toolbox includes an adaptor for Matrox devices that supports many
different framegrabbers provided by that vendor.

When a user calls the imaqhwinfo function to find out which devices are available on their system,
the toolbox engine calls your adaptor's getAvailHW() function to get this information. When you
implement this function, you determine the names, device IDs, and format names that the toolbox
displays to users.

This section includes the following topics

• “Using Objects to Store Device and Format Information” on page 3-7
• “Suggested Algorithm” on page 3-8
• “Storing Device Information” on page 3-9
• “Storing Format Information” on page 3-10
• “Storing Adaptor Data” on page 3-13

Using Objects to Store Device and Format Information

The adaptor kit provides three classes to store device and format information:

Adaptor Kit Object Purpose
IHardwareInfo Overall container class for hardware information
IDeviceInfo Container for information about a particular device
IDeviceFormat Container for information about the formats supported by a

particular device

When the toolbox engine calls your adaptor's getAvailHW() function, it passes your adaptor a
handle to an IHardwareInfo object.

For each device you want to make available through your adaptor, you must create an IDeviceInfo
object and then store the object in the IHardwareInfo object. For each format supported by a
device, you must create an IDeviceFormat object and then store the object in the IDeviceInfo
object.

The following figure shows the relationship of these adaptor kit objects. The figure shows the
IHardwareInfo object containing two IDeviceInfo objects, but it can contain more. Similarly,
each IDeviceInfo object is shown containing two IDeviceFormat objects, but it can also contain
more.

Note in the figure that both the IDeviceInfo and IDeviceFormat objects contain adaptor data.
Adaptor data is an optional way to store additional information about a device or format in an
IDeviceInfo or IDeviceFormat object. See “Defining Classes to Hold Device-Specific Information”
on page 3-13 for more information.

 Specifying Device and Format Information

3-7

Adaptor Kit Objects Used to Store Device and Format Information

Suggested Algorithm
The getAvailHW() function accepts one argument: the handle to an IHardwareInfo object. The
toolbox engine creates this IHardwareInfo object and passes the handle to your adaptor when it
calls your adaptor's getAvailHW() function. The getAvailHW() function does not return a value.

void getAvailHW(imaqkit::IHardwareInfo* hardwareInfo)

Your adaptor's getAvailHW() function must provide the engine with the following information for
each device:

• Device ID
• Device name
• Formats supported by the device, including the default format
• Whether or not the device supports device configuration files (also known as camera files)

Note You can optionally store additional device-specific information in the adaptor data of an
IDeviceInfo object or an IDeviceFormat object. See “Defining Classes to Hold Device-Specific
Information” on page 3-13 for more information.

The following outlines the steps typically performed by a getAvailHW() function. The figure that
follows presents this algorithm in flowchart form.

1 Determine which devices are available through the adaptor. Adaptors typically make calls to the
device's SDK to get this information.

2 For each device found, create an IDeviceInfo object — see “Storing Device Information” on
page 3-9.

a For each format supported by the device, create an IDeviceFormat object — see “Storing
Format Information” on page 3-10.

b Add each device format object that you create to the IDeviceInfo object.

3 Providing Hardware Information

3-8

3 Add the IDeviceInfo object to the IHardwareInfo object passed to your getAvailHW()
function by the toolbox engine.

4 Repeat this procedure for each device available on the user's system.

Suggested Algorithm for getAvailHW() Function

Storing Device Information
You store device information in an IDeviceInfo object. To create this object, use the
createDeviceInfo() member function of the IHardwareInfo object, as in the following example:

imaqkit::IDeviceInfo* deviceInfo =
 hardwareInfo->createDeviceInfo(1,"MyDevice");

As arguments to createDeviceInfo(), you specify:

• Name you want to assign to the device
• ID you want to assign to the device

You can specify any values for these arguments, but note that they are visible to toolbox users in the
structure returned by imaqhwinfo.

For device name, specify a character vector that easily identifies the device. For example, you might
use the manufacturer's model number.

The ID you specify for the device must be unique because it identifies the device for the adaptor.
Because MATLAB indexing starts at 1, start the numbering of device IDs at 1, not zero. The device
with ID 1 is the default device for your adaptor.

 Specifying Device and Format Information

3-9

The IDeviceInfo object you create supports member functions to perform many tasks, such as
creating, adding, and retrieving the IDeviceFormat objects associated with the device, and
indicating whether the device supports device configuration files (also known as camera files). For
more information about this class, see the Image Acquisition Toolbox Adaptor Kit API Reference
documentation.

Adding the IDeviceInfo Object to the IHardwareInfo Object

After you create the IDeviceInfo object, you must add it to the IHardwareInfo object that the
engine passed to your getAvailHW() function. Use the addDevice() member function of the
IHardwareInfo object, as in the following example:

hardwareInfo->addDevice(deviceInfo);

Storing Format Information
You store format information in an IDeviceFormat object. To create this object, use the
createDeviceFormat() member function of an IDeviceInfo object, as in the following example:

imaqkit::IDeviceFormat* deviceFormat =
 deviceInfo->createDeviceFormat(1,"RS170");

As arguments to createDeviceFormat(), you specify

• Name you want to assign to the format
• ID you want to assign to the format

For the format name, specify a character vector that describes the format. Note that the format name
is visible to toolbox users. Use names that might be familiar to users of the device, such as a name
similar to the format names used by the device manufacturer.

Because the ID is not exposed to users, you can specify any convenient value. For example, if the
device's SDK uses numerical identifiers to indicate a format, use these values for your format IDs.

You can use IDeviceFormat member functions to perform many tasks, such as, retrieving the
format name and format ID, and determining whether the format is the default format. For more
information about this class, see the Image Acquisition Toolbox Adaptor Kit API Reference
documentation.

Adding an IDeviceFormat Object to an IDeviceInfo Object

After you create the IDeviceFormat object, add it to the IDeviceInfo object that represents the
device. Use the addDeviceFormat() member function of the IDeviceInfo object, as in the
following example:

deviceInfo->addDeviceFormat(deviceFormat,true);

Specifying the Default Format

When you add a format to an IDeviceInfo object, you use the second argument to the
addDeviceFormat() function to specify whether the format should be used as the default format for
the device. The imaqhwinfo function returns the name of the default format in the DefaultFormat
field. To make a format the default, set this argument to true.

3 Providing Hardware Information

3-10

Configuring Device Configuration File (Camera File) Support

Some devices use device configuration files (also known as camera files) to configure formats and
other properties. If a device supports device configuration files, you do not need to create
IDeviceFormat objects. Instead, use the setDeviceFileSupport() member function of the
IDeviceInfo object to indicate that the device supports device configuration files, as in the
following example:

 deviceInfo->setDeviceFileSupport(true);

For these devices, users pass the full path of the device configuration file as the third argument to the
videoinput function, instead of specifying a device format. Adaptor writers do not need to perform
any processing of the device configuration file; you just pass the file name to the device.

Example: Providing Device and Format Information
The following example presents a simple implementation of a getAvailHW() function that specifies
information for one device with two formats. The intent of this example is to show how you create the
objects necessary to store device and format information. If you add this code to the mydeviceimaq
adaptor, you can run imaqhwinfo('mydeviceimaq') to view the device information.

1 Replace the stub implementation of the getAvailHW() function, created in “Creating a Stub
Adaptor” on page 3-4, with this code:

void getAvailHW(imaqkit::IHardwareInfo* hardwareInfo)
{
 // Create a Device Info object.
 imaqkit::IDeviceInfo* deviceInfo =
 hardwareInfo->createDeviceInfo(1,"MyDevice");

 // Create a Device Format object.
 imaqkit::IDeviceFormat* deviceFormat =
 deviceInfo->createDeviceFormat(1,"RS170");

 // Add the format object to the Device object.
 // Specifying "true' makes this format the default format.
 deviceInfo->addDeviceFormat(deviceFormat, true);

 // Create a second Device Format object.
 imaqkit::IDeviceFormat* deviceFormat2 =
 deviceInfo->createDeviceFormat(2,"PAL");

 // Add the second format object to the Device object.
 deviceInfo->addDeviceFormat(deviceFormat2, false);

 // Add the device object to the hardware info object.
 hardwareInfo->addDevice(deviceInfo);

}
2 Rebuild the mydeviceimaq project to create a new DLL.
3 Start the MATLAB software and run the imaqhwinfo function, specifying the adaptor name

mydeviceimaq as an argument. Note how the DeviceIDs field and the DeviceInfo field of the
structure returned by imaqhwinfo now contain data.

dev = imaqhwinfo('mydeviceimaq')

 Specifying Device and Format Information

3-11

dev =

 AdaptorDllName: 'C:\My_Adaptor\mydeviceimaq.dll'
 AdaptorDllVersion: '4.1 (R2011a)'
 AdaptorName: 'mydeviceimaq'
 DeviceIDs: {[1]}
 DeviceInfo: [1x1 struct]

To view detailed information about the device, view the structure in the DeviceInfo field. The
DeviceInfo field is an array of structures, where each structure provides detailed information
about a particular device.

dev_info = dev.DeviceInfo

dev_info =

 DefaultFormat: 'RS170'
 DeviceFileSupported: 0
 DeviceName: 'MyDevice'
 DeviceID: 1
 ObjectConstructor: 'videoinput('mydeviceimaq', 1)'
 SupportedFormats: {'PAL' 'RS170'}

The following table describes the information in each field, with references to other sections that
provide more information.

Field Description
DefaultFormat Character vector that specifies the default format used by the device. You

define the default format when you add the IDeviceFormat object to the
IDeviceInfo object; see “Specifying the Default Format” on page 3-10.

DeviceFileSupported Boolean value that tells whether the device supports device configuration files
(also known as camera files). You use the setDeviceFileSupport() member
function of the IDeviceInfo object to set this value; see “Configuring Device
Configuration File (Camera File) Support” on page 3-11.

DeviceName Character vector that identifies a particular device. You define this value when
you create the IDeviceInfo object; see “Storing Device Information” on page
3-9.

DeviceID Numeric value that uniquely identifies a particular device. You define this
value when you create the IDeviceInfo object; see “Storing Device
Information” on page 3-9.

ObjectConstructor Character vector that contains the videoinput function syntax required to
create an object instance for this device. The toolbox engine creates this
character vector.

SupportedFormats Cell array of character vectors that identifies the formats this device supports.
You define this value when you create the IDeviceFormat objects associated
with a particular device; see “Storing Format Information” on page 3-10.

3 Providing Hardware Information

3-12

Defining Classes to Hold Device-Specific Information
You might want to store more information about a device or format than the IDeviceInfo and
IDeviceFormat objects allow. One way to do this is to define a new class that contains this
additional information. Then, in your adaptor, instantiate an object of this class and store it in the
adaptor data of the IDeviceInfo or IDeviceFormat objects. Using adaptor data is a good way to
pass important information around inside your adaptor because the IDeviceInfo and
IDeviceFormat objects are passed to other adaptor functions.

Using adaptor data is a three-step process:

1 Define a class to hold the device or format information. See “Defining a Device or Format
Information Class” on page 3-13 for more information.

2 Instantiate an object of this class in your adaptor. Use the constructor you define for your class.
3 Store the object in the adaptor data of the IDeviceInfo or IDeviceFormat object. See

“Storing Adaptor Data” on page 3-13 for more information.

Defining a Device or Format Information Class
The class that you define to store additional device or format information must be derived from the
IMAQinterface class. Subclassing the IMAQInterface class ensures that all memory deallocations
for these classes are routed through the toolbox engine.

For an example of such a class, see the DemoDeviceFormat class in the demo adaptor, defined in the
file DemoDeviceFormat.h.

Storing Adaptor Data
To store your device or format class in the adaptor data of an IDeviceInfo or IDeviceFormat
object, use the setAdaptorData() member function of the object.

Note The objects you store in adaptor data are automatically destroyed when the IDeviceInfo and
IDeviceFormat objects are destroyed. Once you store an object in adaptor data, do not try to
destroy the objects yourself.

The demo adaptor provides an example, defining a class to hold additional format information. This
class, named DemoDeviceFormat, stores format information such as width, height, and color space.
The following example, taken from the demo adaptor, shows how to instantiate an object of this
derived class, assign values to the data members of the class, and then store the object in the adaptor
data of the IDeviceFormat object.

DemoDeviceFormat* rgbFormatInfo = new DemoDeviceFormat();

rgbFormatInfo->setFormatWidth(demo::RGB_FORMAT_WIDTH);
rgbFormatInfo->setFormatHeight(demo::RGB_FORMAT_HEIGHT);
rgbFormatInfo->setFormatNumBands(demo::RGB_FORMAT_BANDS);
rgbFormatInfo->setFormatColorSpace(imaqkit::colorspaces::RGB);

deviceFormat->setAdaptorData(rgbFormatInfo);

 Defining Classes to Hold Device-Specific Information

3-13

Accessing Adaptor Data

To access the adaptor data stored in an IDeviceInfo or IDeviceFormat object, use the
getAdaptorData() member function of the object.

The following example, taken from the demo adaptor, shows how to retrieve the adaptor data from
the IDeviceFormat object. In the example, selectedFormat is a DemoDeviceFormat object. Note
that because the getAdaptorData() member function returns a handle to the IMAQInterface
class, you must cast the returned object to your defined class.

dynamic_cast<DemoDeviceFormat*>(selectedFormat->getAdaptorData());

3 Providing Hardware Information

3-14

Unloading Your Adaptor DLL
Every adaptor must include an uninitializeAdaptor() function. The engine calls this function
when a user resets the toolbox, by calling the imaqreset function, or exits the MATLAB software.

Your adaptor's implementation of this function depends upon the requirements of your hardware.
Every adaptor must include the uninitializeAdaptor() function, even if it is an empty
implementation.

Example
As defined by the adaptor kit, the uninitializeAdaptor() function accepts no arguments and
does not return a value. The following example implements an empty initializeAdaptor()
function.

void uninitializeAdaptor()
{
 // Perform any cleanup your hardware requires.
}

 Unloading Your Adaptor DLL

3-15

Returning Warnings and Errors to the MATLAB Command Line
To return error or warning messages from your adaptor to the MATLAB command line, use the
adaptorError() and adaptorWarning() functions. These functions implement an interface
similar to the MATLAB error and warning functions. Using these functions, you can display a text
message at the MATLAB command line.

You must also include a message ID in your message using the format

<component>[:<component>]:<mnemonic>

where <component> and <mnemonic> are alphanumeric character vectors (for example,
'MATLAB:UndefinedFunction'). The identifier can be used to enable or disable display of the
identified warning. For more information, type help warning or help error at the MATLAB
command line.

The following example outputs a warning message to the MATLAB command line.

imaqkit::adaptorWarn("MyDeviceAdaptor:constructor","In
constructor");

3 Providing Hardware Information

3-16

Defining Your Adaptor Class

This chapter describes how to define your adaptor class and instantiate an object of this class. Every
adaptor must define a class that is a subclass of the adaptor kit IAdaptor abstract class. This
abstract class defines several virtual functions that your adaptor class must implement. This chapter
gets you started with an adaptor class implementation by creating a stub implementation. This stub
implementation will enable you to create a video input object with your adaptor using the
videoinput function. In subsequent chapters, you complete adaptor development by fleshing out
the implementations of these virtual functions.

• “Defining Your Adaptor Class” on page 4-2
• “Using IAdaptor Abstract Class Virtual Functions” on page 4-3
• “Creating Stub Implementation of Your Adaptor Class” on page 4-4
• “Identifying Video Sources” on page 4-7
• “Instantiating an Adaptor Object” on page 4-8

4

Defining Your Adaptor Class
The next four topics describe how to define your adaptor class and instantiate an object of this class.
Every adaptor must define a class that is a subclass of the adaptor kit IAdaptor abstract class. This
abstract class defines several virtual functions that your adaptor class must implement. The next four
topics get you started with an adaptor class implementation by creating a stub implementation. This
stub implementation will enable you to create a video input object with your adaptor using the
videoinput function. In subsequent topics, you complete adaptor development by fleshing out the
implementations of these virtual functions.

When a user calls the videoinput function to create a video input object, the toolbox engine calls
two of the exported functions in your adaptor:

• getDeviceAttributes()
• createInstance()

(To see a flow-of-control diagram that shows how these functions fit with the other required exported
functions, see “Using Adaptor Exported Functions” on page 3-2.)

The getDeviceAttributes() function defines which properties of the device that you want to
expose to users. This function is described only briefly in this chapter (see “Identifying Video
Sources” on page 4-7). For complete information about implementing this exported function, see
“Defining Device-Specific Properties” on page 6-2.

The toolbox engine calls your adaptor's createInstance() function to instantiate an object of the
adaptor class. Every adaptor must define a class that is a subclass of the IAdaptor abstract class,
providing implementations of the pure virtual functions defined in this abstract class.

This chapter describes how to create a stub implementation of your adaptor class (see “Creating Stub
Implementation of Your Adaptor Class” on page 4-4) and create the constructor and destructor for
this class, see “Instantiating an Adaptor Object” on page 4-8. In “Acquiring Image Data” on page 5-
2 you flesh out the implementation of these functions.

Note Because each instance of your adaptor class is associated with a specific format selected by the
user, most of the information returned by these functions is static.

4 Defining Your Adaptor Class

4-2

Using IAdaptor Abstract Class Virtual Functions
The following table lists the pure virtual functions defined by the IAdaptor abstract class, in
alphabetical order. The Demo adaptor included with the Image Acquisition Toolbox software contains
sample implementations of these functions in the file DemoAdaptor.cpp.

Pure Virtual Function Description with Declaration
closeDevice() Terminates the connection to a device — see “Suggested Algorithm for

closeDevice()” on page 5-11.

virtual bool closeDevice();
getDriverDescription() Returns a character vector identifying the device driver used by the device —

see “Specifying Device Driver Identification Information” on page 5-26.

virtual const char* getDriverDescription() const;
getDriverVersion() Returns a character vector identifying the version number of the device driver

used by the device — see “Specifying Device Driver Identification Information”
on page 5-26.

virtual const char* getDriverVersion() const;
getFrameType() Returns the toolbox-defined frame type used to store the images provided by

the device — see “Specifying Frame Type” on page 5-6.

imaqkit::frametypes::FRAMETYPE getFrameType() const;
getMaxHeight() Returns an integer specifying the maximum vertical resolution (the number of

lines) of the image data — see “Specifying Image Dimensions” on page 5-5.

virtual int getMaxHeight() const;
getMaxWidth() Returns an integer specifying the maximum horizontal resolution (in pixels) of

the image data — see “Specifying Image Dimensions” on page 5-5.

virtual int getMaxWidth() const;
getNumberOfBands() Returns the number of bands used in the returned image data — see

“Specifying Image Dimensions” on page 5-5.

virtual int getNumberOfBands() const;
openDevice() Opens a connection with the device, preparing it for use — see “Opening and

Closing Connection with a Device” on page 5-9.

virtual bool openDevice();
startCapture() Starts retrieving frames from the device — see “Starting and Stopping Image

Acquisition” on page 5-13.

virtual bool startCapture();
stopCapture() Stops retrieving frames from the device — see “Suggested Algorithm for

stopCapture()” on page 5-14.

virtual bool stopCapture();

 Using IAdaptor Abstract Class Virtual Functions

4-3

Creating Stub Implementation of Your Adaptor Class
To create a stub implementation of your adaptor class, follow this procedure:

1 Add a C++ header file to the adaptor C++ project. This header file will hold the definition of
your adaptor class. You can give your class any name. This example uses the following naming
convention:

vendor_name + adaptor

For this example, the header file that contains the adaptor class definition is named
MyDeviceAdaptor.h.

2 Copy the following class definition into the header file. This adaptor class contains all the virtual
functions defined by the IAdaptor abstract class.

#include "mwadaptorimaq.h" // required header

class MyDeviceAdaptor : public imaqkit::IAdaptor {

public:

 // Constructor and Destructor
 MyDeviceAdaptor(imaqkit::IEngine* engine, const
 imaqkit::IDeviceInfo* deviceInfo,
 const char* formatName);

 virtual ~MyDeviceAdaptor();

 // Adaptor and Image Information Functions
 virtual const char* getDriverDescription() const;
 virtual const char* getDriverVersion() const;
 virtual int getMaxWidth() const;
 virtual int getMaxHeight() const;
 virtual int getNumberOfBands() const;
 virtual imaqkit::frametypes::FRAMETYPE getFrameType() const;

 // Image Acquisition Functions
 virtual bool openDevice();
 virtual bool closeDevice();
 virtual bool startCapture();
 virtual bool stopCapture();

};
3 Add a C++ source file to the adaptor project. You can give the source file any name. This

example names the file mydeviceadaptor.cpp.
4 Copy the following stub implementations of all the adaptor virtual functions into the C++ source

file.

#include "MyDeviceAdaptor.h"
#include "mwadaptorimaq.h"

// Class constructor
MyDeviceAdaptor::MyDeviceAdaptor(imaqkit::IEngine* engine,
 const, imaqkit::IDeviceInfo* deviceInfo,
 const char* formatName):imaqkit::IAdaptor(engine){
}

4 Defining Your Adaptor Class

4-4

// Class destructor
MyDeviceAdaptor::~MyDeviceAdaptor(){
}

// Device driver information functions
const char* MyDeviceAdaptor::getDriverDescription() const{
 return "MyDevice_Driver";
}
const char* MyDeviceAdaptor::getDriverVersion() const {
 return "1.0.0";
}

// Image data information functions
int MyDeviceAdaptor::getMaxWidth() const { return 640;}
int MyDeviceAdaptor::getMaxHeight() const { return 480;}
int MyDeviceAdaptor::getNumberOfBands() const { return 1;}

imaqkit::frametypes::FRAMETYPE MyDeviceAdaptor::getFrameType()
 const {
 return imaqkit::frametypes::MONO8;
}

// Image acquisition functions
bool MyDeviceAdaptor::openDevice() {return true;}
bool MyDeviceAdaptor::closeDevice(){return true;}
bool MyDeviceAdaptor::startCapture(){return true;}
bool MyDeviceAdaptor::stopCapture(){return true;}

5 Add a reference to your adaptor class header file to the file containing the exported functions,
mydevice_exported_fcns.cpp, that you created in “Using Adaptor Exported Functions” on
page 3-2. This is needed because the createInstance() exported function instantiates an
object of this class.

#include "MyDeviceAdaptor.h"
6 Edit the stub implementations of the createInstance() function, also in the exported

functions source file, mydevice_exported_fcns.cpp. Make the function instantiate an object
of your adaptor class, highlighted in italics below. (In the stub, it returns NULL.)

void getDeviceAttributes(const imaqkit::IDeviceInfo* deviceInfo,
 const char* formatName,
 imaqkit::IPropFactory* devicePropFact,
 imaqkit::IVideoSourceInfo* sourceContainer,
 imaqkit::ITriggerInfo* hwTriggerInfo){

 // Create a video source
 sourceContainer->addAdaptorSource("MyDeviceSource", 1);
}

imaqkit::IAdaptor* createInstance(imaqkit::IEngine* engine,
 imaqkit::IDeviceInfo* deviceInfo,
 char* formatName){

 imaqkit::IAdaptor* adaptor = new
 MyDeviceAdaptor(engine,deviceInfo,formatName);

 return adaptor;
}

 Creating Stub Implementation of Your Adaptor Class

4-5

7 Build the adaptor DLL. Select the Build Solution option on the Build menu.
8 Start the MATLAB software.
9 Call the imaqhwinfo function. Note how the adaptor, named mydeviceimaq, is included in the

list of available adaptors returned by imaqhwinfo. If you have not previously registered your
adaptor DLL, register your adaptor with the toolbox — see “Registering an Adaptor with the
Toolbox” on page 1-8. To view more detailed information about your adaptor, call imaqhwinfo
again with this syntax:

dev_info = imaqhwinfo('mydeviceimaq');
10 Create a video input object for the mydeviceimaq adaptor, using the videoinput function.

Note While you can create a video input object with your adaptor, you cannot use it to acquire
video from a device. You must implement the adaptor class acquisition functions to do that. See
“Acquiring Image Data” on page 5-2 for more information.

vid = videoinput('mydeviceimaq',1)

Summary of Video Input Object Using 'MyDevice'.

 Acquisition Source(s): MyDeviceSource is available.

 Acquisition Parameters: 'MyDeviceSource' is the current selected source.
 10 frames per trigger using the selected source.
 '640x480' video data to be logged upon START.
 Grabbing first of every 1 frame(s).
 Log data to 'memory' on trigger.

 Trigger Parameters: 1 'immediate' trigger(s) on START.

 Status: Waiting for START.
 0 frames acquired since starting.
 0 frames available for GETDATA.

4 Defining Your Adaptor Class

4-6

Identifying Video Sources
The toolbox defines a video source as one or more hardware inputs that are treated as a single entity.
For example, an image acquisition device might support an RGB source that is made up of three
physical connections. The toolbox would treat the three connections as a single video source. Read
the documentation that came with your device to determine the video sources it supports.

When a user creates a video input object, the toolbox engine automatically creates a video source
object for each source supported by an adaptor. The Source property of the video input object lists
the available video sources. The video source object that is used to acquire data is called the
currently selected video source. By default, the toolbox engine uses the first video source you define
as the selected source, but users can switch the selected source by setting the value of the video
input object's SelectedSourceName property.

Suggested Algorithm
Your adaptor's getDeviceAttributes() function must define all the properties and sources of
video data you want to make available to users. This section only covers defining video sources, which
means determining the text labels used to identify the available video sources. For information about
making device properties available to users, see “Defining Device-Specific Properties” on page 6-2.

Note Every adaptor must specify at least one video source; otherwise, you cannot create a video
input object if a video source has not been specified.

You use the addAdaptorSource() member function of the IVideoSourceInfo object that the
toolbox engine passes to your adaptor's getDeviceAttributes() function to define a video source.
You specify the following two arguments:

• Name you want to assign to the source
• ID you want to assign to the source

The name is visible to users. Choose a name that clearly identifies the source. If the device vendor
assigns names to the sources, you can use the same names. For example, Matrox some devices
identify video sources by the labels ch0, ch1, etc.

Because the ID is not exposed to users, you can specify any convenient value. For example, if the
device's SDK uses numerical identifiers to indicate a video source, use these values for your source
IDs.

For example, this code specifies a video source.

sourceContainer->addAdaptorSource("MyDeviceSource",1)

You can use IVideoSourceInfo member functions to perform many tasks, such as determining the
currently selected source. For more information about this class, see the Image Acquisition Toolbox
Adaptor Kit API Reference documentation.

 Identifying Video Sources

4-7

Instantiating an Adaptor Object
Every adaptor must include a createInstance() function. The engine calls this function to
instantiate an object of your adaptor's class. This section includes the following topics:

• “Suggested Algorithm” on page 4-8
• “Implementing Your Adaptor Class Constructor” on page 4-8
• “Implementing Your Adaptor Class Destructor” on page 4-9

Suggested Algorithm
The algorithm for the createInstance() function is simple: call the adaptor class constructor to
instantiate an object of an adaptor class and return a handle to the object. The engine passes these
arguments to your adaptor's createInstance() function. The createInstance() function
accepts three arguments:

imaqkit::IAdaptor* createInstance(imaqkit::IEngine* engine,
 imaqkit::DeviceInfo* deviceInfo,
 const char* FormatName)

The following table describes these arguments. Your adaptor's createInstance() function must
return a handle to an IAdaptor object.

Argument Purpose
engine Handle to an IEngine object that enables your adaptor to communicate

with the engine.
deviceInfo Handle to an IDeviceInfo object that represents the characteristics of a

particular device. This object will be one of the IDeviceInfo objects you
created in your getAvailHW() function.

formatName A character vector that specifies the name of a video format supported by
the device or the full path of a device configuration file. If this specifies a
format, it must be one of the formats represented by the IDeviceFormat
objects you created in your getAvailHW() function.

Implementing Your Adaptor Class Constructor
Because you write the code that calls your adaptor class constructor, you can define the arguments
accepted by your adaptor class constructor. At a minimum, adaptor constructors must accept a
handle to an IEngine object that represents the connection between the engine and your adaptor.
This is defined by the IAdaptor superclass. Your adaptor uses this handle to access engine functions
for packaging image frames and returning them to the engine.

In addition to this required argument, many adaptors also accept two other arguments

• Handle to an IDeviceInfo object that specifies the device to which you want to connect
• Character vector specifying the desired acquisition source format or the full path to a device
configuration file (also known as a camera file)

These are the same arguments passed to your adaptor's createInstance() function.

4 Defining Your Adaptor Class

4-8

Suggested Algorithm

The requirements of your image acquisition device will determine what your class constructor must
do. Class constructors typically perform tasks that only need to be performed once by the class, such
as

• Setting up listeners for all device-specific properties. Listeners notify the class when a user
changes the value of a device-specific property. See “Implementing Get and Set Support for
Device-Specific Properties” on page 6-8.

• Creating a critical section object. Your adaptor will use the critical section to protect data
members that might be accessed from multiple threads. See “Using Critical Sections” on page 5-
24.

Note Your class constructor should not perform any device initialization, because a user might
want to create multiple video input objects. Device initialization occurs when a user has requested
frames — see “Opening and Closing Connection with a Device” on page 5-9.

Example

The following example shows a createInstance() function that instantiates an object of class
MyDeviceAdaptor.

imaqkit::IAdaptor* createInstance(imaqkit::IEngine* engine,
 imaqkit::IDeviceInfo* deviceInfo,
 char* formatName) {

// Instantiate an object of your IAdaptor-derived class

 imaqkit::IAdaptor* adaptor = new
 MyDeviceAdaptor(engine,deviceInfo,formatName);

 return adaptor;
}

Implementing Your Adaptor Class Destructor
This destructor is invoked whenever the associated video input object in the MATLAB software is
deleted.

delete(vid);

A destructor for a class cannot take parameters or return a value. An adaptor class, as a derived
class, must contain a destructor and the destructor must be declared as virtual.

virtual ~MyAdaptor();

Suggested Algorithm

The design of your adaptor class and the requirements of your image acquisition device will
determine what tasks your class destructor must perform. Your class must contain a destructor even
if it is an empty implementation. Some examples of tasks a destructor might perform include:

• Stopping the device, if it is currently acquiring frames — see “Suggested Algorithm for
stopCapture()” on page 5-14.

 Instantiating an Adaptor Object

4-9

• Closing the connection with the device — see “Suggested Algorithm for closeDevice()” on page 5-
11.

• Deleting the critical section object — see “Using Critical Sections” on page 5-24.

Example

This example shows a skeletal implementation of a destructor. For a more complete example, see the
demo adaptor class.

MyAdaptor::~MyAdaptor(){

}

4 Defining Your Adaptor Class

4-10

Acquiring Image Data

This chapter describes how to implement the adaptor member functions to perform image
acquisition. After completing the tasks outlined in this chapter, you will be able to create a video
input object, start it, and trigger an acquisition.

• “Acquiring Image Data” on page 5-2
• “Specifying the Format of the Image Data” on page 5-5
• “Opening and Closing Connection with a Device” on page 5-9
• “Starting and Stopping Image Acquisition” on page 5-13
• “Implementing the Acquisition Thread Function” on page 5-16
• “Supporting ROIs” on page 5-20
• “Supporting Hardware Triggers” on page 5-22
• “Using Critical Sections” on page 5-24
• “Specifying Device Driver Identification Information” on page 5-26

5

Acquiring Image Data
After completing chapters 3 and 4, you can see your adaptor included in the list of adaptors returned
by imaqhwinfo and you can create a video input object using the videoinput function. Now it's
time to acquire data from your device. In this chapter, you flesh out the stub implementations of the
adaptor class virtual functions that work together to acquire data.

User Scenario
The following example shows how a toolbox user initiates the acquisition of image frames. The
example calls the videoinput function to create a video input object and then calls the start
function to start the object. Note in the summary that ten image frames are acquired.
vid = videoinput('winvideo');

start(vid);
vid

Summary of Video Input Object Using 'IBM PC Camera'.

 Acquisition Source(s): input1 is available.

 Acquisition Parameters: 'input1' is the current selected source.
 10 frames per trigger using the selected source.
 'RGB555_128x96' video data to be logged upon START.
 Grabbing first of every 1 frame(s).
 Log data to 'memory' on trigger.

 Trigger Parameters: 1 'immediate' trigger(s) on START.

 Status: Waiting for START.
 10 frames acquired since starting.
 10 frames available for GETDATA.

Triggering
In the previous example, the start function opens the connection with the device but does not
actually cause the acquisition of image data. The toolbox uses triggers to control image acquisition.
By default, video input objects are configured with an immediate trigger so, in the example, when you
start the object, an immediate trigger fires.

The toolbox also supports two other types of triggers: manual and hardware. With a manual trigger,
after starting a video input object, you must call the trigger function to acquire data. With
hardware triggers, you start the object and it waits until it receives a signal from an external device
to start acquiring data.

The toolbox handles immediate and manual triggering automatically; you do not have to include any
special processing in your adaptor. Supporting hardware triggers, requires some adaptor
development work. For more information, see “Supporting Hardware Triggers” on page 5-22.

Overview of Virtual Functions Used to Acquire Data
The pure virtual functions in your adaptor class that you must implement work together to acquire
data. However, the main steps are:

1 Specify the format of the video data in the getMaxHeight(), getMaxWidth(),
getNumberOfBands(), and getFrameType() functions — see “Specifying the Format of the
Image Data” on page 5-5.

5 Acquiring Image Data

5-2

2 Open a connection with your device in the openDevice() function — see “Opening and Closing
Connection with a Device” on page 5-9.

3 Start acquiring data in the startCapture() function — see “Starting and Stopping Image
Acquisition” on page 5-13.

4 Stop acquiring data in the stopCapture() function — see “Starting and Stopping Image
Acquisition” on page 5-13.

5 Close the connection with the device in the closeDevice() function — see “Opening and
Closing Connection with a Device” on page 5-9.

The following diagram shows this flow of control in graphical form. This diagram picks up where the
diagram in Chapter 3 ends, after the object has been created — see “Acquiring Image Data” on page
5-2.

Note The diagrams do not show the calls your adaptor makes to the image acquisition device's SDK
because these calls vary with each device's SDK.

 Acquiring Image Data

5-3

Flow of Control among the Adaptor Acquisition Functions

5 Acquiring Image Data

5-4

Specifying the Format of the Image Data
Before you can acquire data from your device, you must tell the engine the format of the data it can
expect to receive from your device. Without this information, the engine does not know how to
interpret the data. For example, the engine needs to know the size of the bytes used to store image
data, the length of each line and the total number of lines in each image frame, and the number of
planes, or bands, in each image frame. (e.g. RGB data has three bands). The following figure
illustrates this information.

In some cases, this format information is determined by external standards, such as the RS-170/NTSC
standard. In other cases, device vendors define many different formats, described in the
documentation that comes with the device. Adaptor writers decide which of these supported formats
they want to make available to users of their adaptor in their getAvailHW() function, described in
“Storing Format Information” on page 3-10.

This section describes how you specify format information in your adaptor after using the adaptor
class virtual functions.

• “Specifying Image Dimensions” on page 5-5
• “Specifying Frame Type” on page 5-6

Specifying Image Dimensions
You specify the dimensions of the image data a device outputs using the following virtual functions.

• getMaxHeight() — Returns an integer that specifies the maximum height of the image data.
• getMaxWidth() — Returns an integer that specifies the maximum width of the image data.
• getNumberOfBands() — Returns an integer that specifies the number of dimensions in the data.

For example, RGB formats use three bands.

The engine calls these functions in your adaptor to get the resolution information that it displays in
the VideoResolution property of the video input object.

vid = videoinput('mydeviceimaq');

get(vid,'VideoResolution')

ans =

 640 480

Your adaptor also call these functions when it creates the IAdaptorFrame object to receive image
data. See “Implementing the Acquisition Thread Function” on page 5-16 for more information.

 Specifying the Format of the Image Data

5-5

Suggested Algorithm

The getMaxHeight(), getMaxWidth(), and getNumberOfBands() functions in an adaptor
typically perform the following processing:

1 Determine the format specified by the user when they created the video input object. The engine
passes this information as an argument to your adaptor's createInstance() function.

2 Based on the format chosen, return the appropriate values of the height, width, or number of
bands. Your adaptor can accomplish this in many ways. One way, illustrated by the demo adaptor,
is to determine these values in your getAvailHW() function and store the information in
application data in the IDeviceFormat object — see “Defining Classes to Hold Device-Specific
Information” on page 3-13. Then, the getMaxHeight(), getMaxWidth(), and
getNumberOfBands() functions can retrieve this application data and read these values.

Example

The following implementations of the getMaxHeight() and getMaxWidth() functions determine
the value based on the format specified by the user. The number of bands depends on whether the
format is color or monochrome. For color formats, such as RGB and YUV, the number of bands is
always 3. For monochrome (black and white) formats, the number of bands is always 1. The Image
Acquisition Toolbox software only supports image data with 1 or 3 bands.

Replace the stub implementations in the example adaptor with the following code C++ file,
mydevice.cpp, created in Chapter 3. The values are appropriate for the format names specified in
the example in “Specifying Device and Format Information” on page 3-7.

int MyDeviceAdaptor::getMaxHeight() const{
 if(strcmp(_formatName,"RS170"){
 return 480;
 } else {
 return 576;
}

int MyDeviceAdaptor::getMaxWidth() const {
 if(strcmp(_formatName,"RS170"){
 return 640;
 } else {
 return 768;
 }
}
int MyDeviceAdaptor::getNumberOfBands() const {

 return 1;
}

Specifying Frame Type
In addition to the image frame dimensions, you must provide the engine with information about the
byte layout of the image data. Byte layout includes the number of bits used to represent pixel values,
whether the data is signed or unsigned, the endianness of the data, and whether the device sends the
bottom row first.

To specify this information, you must select one of the FRAMETYPE enumerations defined by the
adaptor kit. The adaptor kit defines enumerations for many different frame types to represent the
wide variety of formats supported by devices. For example, if your device is a monochrome (black and

5 Acquiring Image Data

5-6

white) device that returns 8-bit data, you might choose the MONO8 frame type. If your device is a color
device that returns 24-bit data, you might choose the RGB24 frame type. The following table
summarizes the frame types that are available. To choose a specific format, view the list in the Image
Acquisition Toolbox Adaptor Kit API Reference documentation or open the AdaptorFrameTypes.h
file.

Format Frame Types
Monochrome 8-, 10-, 12-, and 16-bit formats; both little-endian and big-endian; in regular

and flip formats. (In flip formats, the device delivers the bottom line first.)
Signed 16- and 32-bit formats; both little-endian and big-endian; in regular
and flip formats.
Floating-point and double formats; both little-endian and big-endian
formats; in regular and flip formats.

Color 8-, 24-, 32-, and 48-bit RGB formats; both little-endian and big-endian;
regular and flip; packed and planar (see “Understanding Packed and Planar
Formats” on page 5-7).
Frame types that specify the order of the bytes of color data (RGB or GBR)
and specify where the blank byte is located (XRGB or XGBR).
Formats that represent colors in 4-bits (4444), 5-bits (555), 5- or 6-bits
(565), or 10-bits (101010).
Formats that use the YUV color space.

Suggested Algorithm

Your adaptor's getFrameType() function must return the appropriate frame type that describes the
data returned by your device for the specified format.

If your device supports multiple color formats, you do not need to expose all the formats to toolbox
users. You can simply provide one color format and handle the low-level details in your adaptor with
FRAMETYPE.

Example

The following example shows a skeletal implementation of the getFrameType() function. An actual
implementation might select the frame type based on the format the user selected.

virtual imaqkit::frametypes::FRAMETYPE getFrameType() const {

 return imaqkit::frametypes::FRAMETYPE:MONO8;
}

Understanding Packed and Planar Formats

The adaptor kit IAdaptorFrame class defines many FRAMETYPE enumerations that cover the many
possible types of image data devices can return. For example, some devices can return color images
in packed or nonpacked (planar) formats. These formats describe how the bytes of red, green, and
blue data are arranged in memory. In packed formats, the red, green, and blue triplets are grouped
together. In nonpacked formats, all the red data is stored together, followed by all the green data,
followed by all the blue data. The following figure illustrates this distinction.

 Specifying the Format of the Image Data

5-7

Packed and Planar Formats

To get more information about video formats, go to the fourcc.org Web site.

5 Acquiring Image Data

5-8

Opening and Closing Connection with a Device
Adaptors typically open a connection with the device in their openDevice() function and close the
connection in their closeDevice() function. For most devices, opening a connection to the device
reserves it for exclusive use. Closing the device releases the device.

Note The toolbox engine actually calls the IAdaptor class open() member function to open a
connection with a device and the close() function to close a connection with a device. These
function then call your adaptor's openDevice() and closeDevice() functions. If your adaptor
needs to open or close a device, use the open() and close() functions, rather than calling
openDevice() or closeDevice() directly.

Suggested Algorithm for openDevice()
The openDevice() function typically performs the following tasks.

1 Test whether the device is already open by calling the IAdaptor class isOpen() function. If the
device is already open, your openDevice() function should return true. If the device is not
already open, your openDevice() function should establish a connection to the device using
device SDK calls.

2 Start the acquisition thread. See “Starting an Acquisition Thread” on page 5-9 for more
information.

Note Starting a separate thread is only required if your adaptor uses a thread-based design.
Adaptors can also use asynchronous interrupts (callbacks) to acquire frames, if the device
supports this. In this scenario, adaptors receive notification asynchronously when data is
available. For information about using this method, refer to the documentation for your device's
SDK.

Starting an Acquisition Thread

To start an acquisition thread, use the Windows CreateThread() function. The CreateThread()
function creates a thread that executes within the virtual address space of the calling process.

The CreateThread() function accepts these parameters.

HANDLE CreateThread(
 LPSECURITY_ATTRIBUTES lpThreadAttributes,
 SIZE_T dwStackSize,
 LPTHREAD_START_ROUTINE lpStartAddress,
 LPVOID lpParameter,
 DWORD dwCreationFlags,
 LPDWORD lpThreadId
);

For an adaptor, the following table lists the parameters you must set. For complete information about
creating a thread, see Microsoft Docs.

 Opening and Closing Connection with a Device

5-9

https://docs.microsoft.com/en-us/

Parameter Description
lpStartAddress Address of the acquisition thread procedure. Specify the name of the

thread procedure declared in your adaptor class header file. See
“Implementing the Acquisition Thread Function” on page 5-16.

lpParameter Pointer to the object itself, i.e., the this pointer.
lpThreadId Address of a variable in which the CreateThread() function returns the

ID assigned to the newly created thread

After you call the CreateThread() function, applications typically call the PostThreadMessage()
function to send a message to the new thread. This causes the system to create a message queue for
the thread. Enter a loop to wait until the thread acknowledges the message was received to ensure
that the thread queue has been created. Your adaptor terminates the thread in your adaptor's
closeDevice() function — see “Suggested Algorithm for closeDevice()” on page 5-11.

Example: Opening a Connection

This example shows a skeletal implementation of an openDevice() function.

1 Replace the stub implementation of the openDevice() function in the MyDevice adaptor with
this code.

bool MyDeviceAdaptor::openDevice()
{
 // If device is already open, return true.
 if (isOpen())
 return true;

 // Create the image acquistion thread.
 _acquireThread = CreateThread(NULL,
 0,
 acquireThread,
 this,
 0,
 &_acquireThreadID);
 if (_acquireThread == NULL) {
 closeDevice();
 return false;
 }

 // Wait for thread to create message queue.
 while(PostThreadMessage(_acquireThreadID,WM_USER+1,0,0) == 0)
 Sleep(1);

 return true;
}

2 To be able to compile and link your adaptor, you must create a stub implementation of your
acquireThread() function and add it to your adaptor. You can fill in the complete
implementation later — see “Implementing the Acquisition Thread Function” on page 5-16.

DWORD WINAPI MyDeviceAdaptor::acquireThread(void* param) {

 MSG msg;
 while (GetMessage(&msg,NULL,0,0) > 0) {
 switch (msg.message) {
 case WM_USER:

5 Acquiring Image Data

5-10

 // The frame acquisition loop code goes here.
 imaqkit::adaptorWarn(''in acquire thread function \n'');

 } // end switch
 } // end while

 return 0;
} // end acquireThread

3 Add declarations of the acquireThread() function, the acquireThread variable, and the
acquireThreadID variable as private data members of your adaptor class header file. In this
example, MyDeviceAdaptor.h.

private:
// Declaration of acquisition thread function
static DWORD WINAPI acquireThread(void* param);

// Thread variable
HANDLE _acquireThread;

// Thread ID returned by Windows.
DWORD _acquireThreadID;

4 Compile and link your adaptor. You should be able to create a video input object. When you call
the start function, verify that your adaptor successfully created the acquisition thread.

Suggested Algorithm for closeDevice()
The closeDevice() function typically performs the following tasks.

1 Test whether the device is already closed. If it is, exit.
2 Post a message to the acquisition thread to quit and wait until it returns before exiting, for

adaptors with thread-based designs. For more information about posting a message to the
thread, see “Sending a Message to the Acquisition Thread” on page 5-13.

3 Close the handle associated with the acquisition thread and reset the thread handle variable to
NULL.

Example: Closing the Connection with a Device

The example shows a skeletal implementation of the closeDevice() function.

bool MyDeviceAdaptor::closeDevice(){

 // If the device is not open, return.
 if (!isOpen())
 return true;

 // Terminate and close the acquisition thread.
 if (_acquireThread) {
 // Send WM_QUIT message to thread.
 PostThreadMessage(_acquireThreadID, WM_QUIT, 0, 0);

 // Give the thread a chance to finish.
 WaitForSingleObject(_acquireThread, 10000);

 // Close thread handle.

 Opening and Closing Connection with a Device

5-11

 CloseHandle(_acquireThread);
 _acquireThread = NULL;
 }
 return true;
}

5 Acquiring Image Data

5-12

Starting and Stopping Image Acquisition
Once openDevice() returns successfully, the engine calls your adaptor's startCapture() function
to start acquiring data.

The engine calls your adaptor's stopCapture() function when a user calls the stop or
closepreview function on a video input object, or when the specified number of frames has been
acquired and the acquisition is complete. For example,

vid = videoinput('winvideo',1);
set(vid,'FramesPerTrigger',1000); //
start(vid);
stop(vid);

Suggested Algorithm for startCapture()
The startCapture() function typically performs the following tasks.

1 Check whether an acquisition is already occurring, using the IAdaptor member function
isAcquiring(). If it is, exit.

2 Send a message to the acquisition thread, using the Windows PostThreadMessage() function,
telling it to begin acquiring image frames from the device. See “Sending a Message to the
Acquisition Thread” on page 5-13 for more information.

Note Sending a start message to the acquisition thread is only required if your adaptor uses a
thread-based design. Adaptors can also use asynchronous interrupts (callbacks) to acquire
frames, if the device supports this. Refer to the documentation that came with your device's SDK
for more information.

The startCapture() function also typically makes sure that the latest image acquisition object
properties are used (see “Implementing Get and Set Support for Device-Specific Properties” on page
6-8), and configures hardware triggers, if supported and set (see “Supporting Hardware Triggers”
on page 5-22).

Sending a Message to the Acquisition Thread

To send a message to a thread, use the Windows PostThreadMessage() function. The adaptor's
acquisition thread function uses the Windows GetMessage() function to receive these messages —
see “Example: Opening a Connection” on page 5-10.

The PostThreadMessage() function accepts these parameters:

BOOL PostThreadMessage(DWORD idThread,
 UINT Msg,
 WPARAM wParam,
 LPARAM lParam
);

The following table describes how to set these parameters for an adaptor. For more information about
sending thread messages, see Microsoft Docs.

 Starting and Stopping Image Acquisition

5-13

https://docs.microsoft.com/en-us/

Parameter Description
idThread Identifier of the thread to which the message is to be posted, returned by

CreateThread().
Msg Message to be posted. Microsoft defines a range of values for user messages,

beginning with the value WM_USER.
wParam Additional message-specific information
lParam Additional message-specific information

Example: Initiating Acquisition

This example illustrates a simple startCapture() function. This function takes no arguments and
returns a Boolean value indicating whether the video input object is in start state.

1 Replace the stub implementation in the MyDeviceAdaptor.cpp file with this code and then
rebuild your adaptor.

bool MyDeviceAdaptor::startCapture(){
 // Check if device is already acquiring frames.
 if (isAcquiring())
 return false;

 // Send start message to acquisition thread
 PostThreadMessage(_acquireThreadID, WM_USER, 0, 0);

 return true;
}

2 Start the MATLAB software and run your adaptor to verify that your acquisition thread gets the
start message from startCapture().

Suggested Algorithm for stopCapture()
The stopcapture() function typically performs these tasks.

1 Checks whether the adaptor is already stopped by calling the isAcquiring() function. If the
device is not currently acquiring data, return true.

2 Stops the frame acquisition loop and stops the device, if necessary

Note It is important not to exit the stopCapture() function while the acquisition thread
function is still acquiring frames. One way to do this is to try to acquire a critical section. When
you are able to acquire the critical section, you can be sure that the frame acquisition loop has
ended, giving up its critical section.

Example

The following example illustrates a simple stopCapture() function. This function takes no
arguments and returns a Boolean value indicating whether the video input object is in stopped state.
Replace the stub implementation in the MyDeviceAdaptor.cpp file with this code and then rebuild
your adaptor.

bool MyDeviceAdaptor::stopCapture(){

// If the device is not acquiring data, return.

5 Acquiring Image Data

5-14

 if (!isOpen())
 return true;

//**
// Insert calls to your device's SDK to stop the device, if
// necessary.
//**

 return true;
}

The stopCapture() function in the demo adaptor provides another example of how to stop the
frame acquisition loop. The adaptor defines a flag variable that it checks each time it enters the frame
acquisition loop. To break out of the frame acquisition loop, the demo adaptor sets this flag variable
to false. See the demo adaptor source code for more details.

 Starting and Stopping Image Acquisition

5-15

Implementing the Acquisition Thread Function
This section describes how to implement your adaptor's acquisition thread function. In a threaded
adaptor design, the acquisition thread function performs the actual acquisition of frames from the
device. When you create the thread (“Opening and Closing Connection with a Device” on page 5-9),
you specify the name of this acquisition thread function as the starting address for the new thread.

User Scenario
The toolbox engine invokes the acquisition thread function indirectly when a user calls the start,
getsnapshot, or preview function. Once called, the acquisition thread function acquires frames
until the specified number of frames has been acquired or the user calls the stop function.

Suggested Algorithm

Note The design of the acquisition thread function can vary significantly between various adaptors,
depending on the requirements of the device's SDK. This section does not describe device-dependent
implementation details but rather highlights required tasks that are common to all implementations.

At its highest level, in a threaded design, an acquisition thread function typically contains two loops:

• “Thread Message Loop” on page 5-16
• “Frame Acquisition Loop” on page 5-17

Thread Message Loop

The thread message loop is the main processing loop in the acquisition thread function. You create
the thread in the openDevice() function. The acquisition thread function enters the thread message
loop, waiting for the message to start acquiring frames. Your adaptor's startCapture() function
sends the message to the acquisition thread, telling it to start acquiring frames. This example uses
the WM_USER message to indicate this state. See “Sending a Message to the Acquisition Thread” on
page 5-13 for more information.

When it receives the appropriate message, the acquisition thread function enters the frame
acquisition loop. The following figure illustrates this interaction between your adaptor functions and
the acquisition thread. For information about the frame acquisition loop, see “Frame Acquisition
Loop” on page 5-17.

5 Acquiring Image Data

5-16

Interaction of Adaptor Functions and Acquisition Thread

Frame Acquisition Loop

The frame acquisition loop is where your adaptor acquires frames from the device and sends them to
the engine. This process involves the following steps:

1 Check whether the specified number of frames has been acquired. The frame acquisition loop
acquires frames from the device until the specified number of frames has been acquired. Use the
IAdaptor member function isAcquisitionNotComplete() to determine if more frames are
needed.

2 If your adaptor supports hardware triggers, you would check whether a hardware trigger is
configured here — “Supporting Hardware Triggers” on page 5-22.

3 Grab a frame from the device. This code is completely dependent on your device SDK's API. With
many device SDKs, you allocate a buffer and the device fills it with image data. See your device's
API documentation to learn how to get frames from your device.

4 Check whether you need to send the acquired frame to the engine, using the IAdaptor member
function isSendFrame(). This is how the toolbox implements the FrameGrabInterval
property, where users can specify that they only want to acquire every other frame, for example.

 Implementing the Acquisition Thread Function

5-17

If you need to send a frame to the engine, package the frame in an IAdaptorFrame object;
otherwise, skip to step 5.

a Create a frame object, using the IEngine object makeFrame() member function. You must
specify the image frame dimensions and frame type when you create the frame object.

b Put the acquired image data into the frame object, using the IAdaptorFrame object
setImage() member function. You specify a pointer to the buffer that contains the image
data, the frame width and height and any offsets from the upper left corner of the image.

Note For information about specifying frame width, height, and offset with ROIs, see
“Supporting ROIs” on page 5-20.

c Log the time of the acquisition in the frame object, using the IAdaptorFrame member
function setTime(). Device SDKs sometimes provide access to time stamp information, but
you can also use the adaptor kit getCurrentTime() function.

d Send the packaged frame to the engine, using the IEngine member function
receiveFrame().

5 Increment the frame count using the IAdaptor member function incrementFrameCount().
Whether you need to send a frame or not, you must always increment the frame count whenever
you acquire a frame.

6 Return to the top of the frame acquisition loop.

The following figure illustrates the frame acquisition loop.

A Possible Algorithm for the Frame Acquisition Loop

Example
The following is a declaration of an acquisition thread function. You can give your acquisition thread
procedure any name, such as acquireThread().

5 Acquiring Image Data

5-18

DWORD WINAPI acquireThread(void* ThreadParam);

Your thread function must accept a single parameter, which is defined as a pointer to the object itself,
i.e., the this pointer. The thread function returns a value that indicates success or failure. For more
information, see Microsoft Docs.

The following is an acquisition thread function that you can use with the example
MyDeviceAdaptor. Replace the skeletal implementation you used in “Starting an Acquisition
Thread” on page 5-9 with this code.
DWORD WINAPI MyDeviceAdaptor::acquireThread(void* param) {

MyDeviceAdaptor* adaptor = reinterpret_cast<MyDeviceAdaptor*>(param);

MSG msg;
while (GetMessage(&msg,NULL,0,0) > 0) {
 switch (msg.message) {
 case WM_USER:
 // Check if a frame needs to be acquired.
 while(adaptor->isAcquisitionNotComplete()) {

 // Insert Device-specific code here to acquire frames
 // into a buffer.

 if (adaptor->isSendFrame()) {

 // Get frame type & dimensions.
 imaqkit::frametypes::FRAMETYPE frameType =
 adaptor->getFrameType();
 int imWidth = adaptor->getMaxWidth();
 int imHeight = adaptor->getMaxHeight();

 // Create a frame object.
 imaqkit::IAdaptorFrame* frame =
 adaptor->getEngine()->makeFrame(frameType,
 imWidth,
 imHeight);

 // Copy data from buffer into frame object.
 frame->setImage(imBuffer,
 imWidth,
 imHeight,
 0, // X Offset from origin
 0); // Y Offset from origin

 // Set image's timestamp.
 frame->setTime(imaqkit::getCurrentTime());

 // Send frame object to engine.
 adaptor->getEngine()->receiveFrame(frame);
 } // if isSendFrame()

 // Increment the frame count.
 adaptor->incrementFrameCount();

 } // while(isAcquisitionNotComplete()

 break;
 } //switch-case WM_USER
 } //while message is not WM_QUIT

return 0;
}

 Implementing the Acquisition Thread Function

5-19

https://docs.microsoft.com/en-us/

Supporting ROIs
The toolbox supports the specification of regions of interest (ROIs) in both software and hardware.
The following sections provide more information.

In this section...
“Implementing Software ROI” on page 5-20
“Implementing Hardware ROI” on page 5-21

Implementing Software ROI
When using a software ROI, a toolbox user sets the dimensions of the ROI in the ROIPosition
property. The device returns the entire image frame. Your adaptor specifies the ROI dimensions when
it creates the Frame object to package up the image data.

User Scenario

Users set the value of the ROIPosition property to specify an ROI. Users specify the value as a four-
element vector in the form:

[Xoffset Yoffset Width Height]

The x- and y-offsets define the position of the ROI in relation to the upper left corner of the image
frame. For more information about this property, see the Image Acquisition Toolbox documentation.

Suggested Algorithm

To support software ROI, your adaptor must check the value of the ROIposition property before
creating the frame object because you need to specify the ROI dimensions when you create the
frame. This is typically done in the openDevice() or startCapture() functions.

In your frame acquisition loop, insert the following call to the IAdaptor function getROI(). Then, use
the ROI width and height values when you create the IAdaptorFrame object, rather than the full
image height and width returned by the device.

Note You use the ROI width and height when you create the frame but you use the full image width
and height when you copy the image data from the buffer into the frame object.

Example

The following is a version of the isSendFrame() loop in the acquisition thread function that checks
the ROI. Note that you call the getROI() function to get the ROI values, and then use the width and
height values in the call to makeFrame() and the offsets from the origin in the call to setImage().

if (adaptor->isSendFrame()) {

 // Get ROI information.
 int roiOriginX, roiOriginY, roiWidth, roiHeight;
 adaptor->getROI(roiOriginX,
 roiOriginY,
 roiWidth,

5 Acquiring Image Data

5-20

 roiHeight);

 // Get frame type & dimensions
 imaqkit::frametypes::FRAMETYPE frameType =
 adaptor->getFrameType();
 int imWidth = adaptor->getMaxWidth();
 int imHeight = adaptor->getMaxHeight();

 // Create a frame object
 imaqkit::IAdaptorFrame* frame =
 adaptor->getEngine()->makeFrame(frameType,
 roiWidth, // ROI width
 roiHeight); // ROI height

 // Copy data from buffer into frame object
 frame->setImage(imBuffer,
 imWidth, // Full image width
 imHeight, // Full image height
 roiOriginX, // ROI origin
 roiOriginY); // ROI origin

 // Set image's timestamp
 frame->setTime(imaqkit::getCurrentTime());
 // Send frame object to engine.
 adaptor->getEngine()->receiveFrame(frame);

} // if isSendFrame()

Implementing Hardware ROI
For hardware ROI, the user defines the ROI on the device. The device returns only the data in the
specified ROI.

To implement hardware ROI, you must overload both the IAdaptor's getROI() and setROI()
member functions in your implementation of your adaptor class. By default, if the IAdaptor object's
getROI() member function is not overloaded, ROI configurations will be handled in software by
imaqkit::IEngine.

 Supporting ROIs

5-21

Supporting Hardware Triggers
The toolbox supports three types of triggers:

• Immediate — Trigger fires when video input object is started.
• Manual — Trigger fires when user calls trigger function.
• Hardware — Trigger fires when externally defined conditions are met

The engine provides automatic support for immediate and manual triggers. If you want your adaptor
to support hardware triggers you must check to see if users have specified a hardware trigger in your
acquisition thread function. Before you start acquiring frames from your device, insert a call to the
IAdaptor member function useHardwareTrigger() to determine if the frame acquisition loop
should wait for a hardware trigger to fire. If a hardware trigger is configured, insert device SDK calls
required to wait for trigger.

The following figure illustrates the frame acquisition loop with the test for hardware trigger.

Main Acquisition Loop with Test for Hardware Trigger

Example
The following is an acquisition thread function that includes a call to check for hardware trigger.

5 Acquiring Image Data

5-22

while(adaptor->isAcquisitionNotComplete()) {

 // Check for hardware trigger
 if (adaptor->useHardwareTrigger()) {

 // Add code here to configure the image
 // acquisition device for hardware
 // triggering.
 }

 if (adaptor->isSendFrame()) {

 // see acquistion thread

 } // if isSendFrame()

 // Increment the frame count.
 adaptor->incrementFrameCount();

 } // while(isAcquisitionNotComplete()

 break;
 } //switch-case WM_USER
 } //while message is not WM_QUIT

return 0;
}

 Supporting Hardware Triggers

5-23

Using Critical Sections
This section describes how to use critical sections to protect portions of your adaptor code. The
section describes the adaptor kit's main critical section class, ICriticalSection, and the ancillary
class, IAutoCriticalSection, that you use to manage critical sections. Topics covered include

• “Understanding Critical Sections” on page 5-24
• “Example: Using a Critical Section” on page 5-24

Understanding Critical Sections
To prevent sections of code or resources from being accessed simultaneously by multiple threads, use
critical section (ICriticalSecton) objects. The basic process for using a critical section has three-
steps:

1 Create a critical section object, using the adaptor kit createCriticalSection() function.
2 At the point in your code that you want to protect, enter the critical section by calling the

ICriticalSection::enter() member function.
3 At the end of the code that you want to protect, leave the critical section by calling the

ICriticalSection::leave() member function.

While this process might appear simple, using a ICriticalSection object directly in this way can
expose your adaptor to problems. For example, if an error occurs in the protected code, the call to the
leave() function might never be executed. Entering a critical section and then never leaving it can
cause unexpected results.

To make working with critical sections easier, the adaptor kit provides a second class, called
IAutoCriticalSection, that can help you manage the critical sections you define.

You first create an ICriticalSection object and then pass this object to the
createAutoCriticalSection() function when you create the IAutoCriticalSection object.
When you create the object, you automatically enter the critical section without having to call the
enter() function. When the protected code goes out of scope, the auto critical section automatically
leaves the critical section without your code having to call the leave() function.

The auto critical section object ensures that you always exit a critical section. However, you must also
ensure that the auto critical section itself gets deleted. To do this, the adaptor kit recommends
managing the handle to the IAutoCriticalSection object, returned by
createAutoCriticalSection(), as an auto_ptr using the std::auto_ptr<> template class
from the Standard Template Library. The auto_ptr helps ensure that the IAutoCriticalSection
handle is deleted.

Example: Using a Critical Section
To define a section of code as a critical section, follow this procedure.

1 Create an ICriticalSection object, using the createCriticalSection() function.
Adaptors typically create an ICriticalSection object in their constructors — see
“Implementing Your Adaptor Class Constructor” on page 4-8.

_mySection = imaqkit::createCriticalSection();

5 Acquiring Image Data

5-24

The function returns a handle to an ICriticalSection object. _mySection, which is declared
as a member variable in the adaptor class header file, as follows.

imaqkit::ICriticalSection* _mySection;
2 At the point in your code that you want to protect, create an IAutoCriticalSection object.

The IAutoCriticalSection class guarantees that the critical section objects are released
when the protected code goes out of scope, or if an exception occurs. In an adaptor, you typically
want to protect the frame acquisition loop in a critical section. Insert this code in the acquisition
thread function, just before the frame acquisition loop — see “Implementing the Acquisition
Thread Function” on page 5-16.
std::auto_ptr<imaqkit::IAutoCriticalSection>
myAutoSection(imaqkit::createAutoCriticalSection(adaptor->_mySection,
true));

In this code, the variable myAutoSection is a handle to an IAutoCriticalSection object,
that is managed as a Standard Template Library auto_ptr. The code passes a handle to an
ICriticalSection object, _mySection, as an argument to the
createAutoCriticalSection() function. The second argument to
createAutoCriticalSection() specifies that the adaptor should enter the critical section
automatically upon creation of the IAutoCriticalSection.

3 At the end of the code that you want to protect, leave the critical section. In an adaptor, you want
to leave the critical section after the frame acquisition loop is done. Insert this code just before
the acquisition thread function breaks out of the frame acquisition loop — see “Implementing the
Acquisition Thread Function” on page 5-16.

You can use the IAutoCriticaSection::leave() function but this is not necessary. The
IAutoCriticalSection leaves the critical section automatically when the code section goes
out of scope. You might want to include explicit calls to the leave() function in your code to
help document the extent of your critical section.

bool MyDeviceAdaptor::stopCapture(){

// If the device is not acquiring data, return.
 if (!isAcquiring())
 return true;

// Get the critical section and enter it.

 std::auto_ptr<imaqkit::IAutoCriticalSection>
 GrabSection(imaqkit::createAutoCriticalSection(_grabSection,
 true));

//**
// Insert calls to your device's SDK to stop the device, if
// necessary.
//**

// Leave the critical section.

 GrabSection->leave();

 return true;
}

 Using Critical Sections

5-25

Specifying Device Driver Identification Information
Two of the virtual functions you must implement return identification information about the device
driver used to communicate with your device. This information can be useful for debugging purposes.

• getDriverDescription() — Returns a character vector that identifies the device.
• getDriverVersion() — Returns a character vector that specifies the version of the device

driver.

Adaptors typically use an SDK function to query the device to get this information, if the SDK
supports it, or obtain the information from the device documentation.

User Scenario
The identification character vectors returned by getDriverDescription() and
getDriverVersion() are visible to users if they call imaqhwinfo, specifying a video input object
as an argument, as follows.

vid = videoinput('mydeviceimaq');

imaqhwinfo(vid)
ans =

 AdaptorName: 'mydeviceimaq'
 DeviceName: 'MyDevice'
 MaxHeight: 280
 MaxWidth: 120
 TotalSources: 1
 VendorDriverDescription: 'MyDevice_Driver'
 VendorDriverVersion: '1.0.0'

Example
The following example contains skeletal implementations of the getDriverDescription() and
getDriverVersion() functions.

const char* MyDeviceAdaptor::getDriverDescription() const{
 return "MyDevice_Driver";
}

const char* MyDeviceAdaptor::getDriverVersion() const {
 return "1.0.0";
}

5 Acquiring Image Data

5-26

Defining Device-Specific Properties

This chapter describes how to define the properties that toolbox users can use to configure various
attributes of a device. These properties can control aspects of the image acquired, such as
brightness, behavior of the device, such as shutter speed, and other device-specific characteristics.

• “Defining Device-Specific Properties” on page 6-2
• “Creating Device Properties” on page 6-4
• “Defining Hardware Trigger Configurations” on page 6-7
• “Implementing Get and Set Support for Device-Specific Properties” on page 6-8

6

Defining Device-Specific Properties
You define which properties of your image acquisition device you want to expose to toolbox users. You
make this determination by reading the device SDK documentation, determining its capabilities, and
deciding which capabilities toolbox users will expect to configure. Once you decide to expose a
property, define the following characteristics of the property:

• Name
• Data type
• Range of valid values (optional)

Adaptor writers typically wait to define properties until after they are able to acquire data from the
device. To see the effect of some properties, you need to be able to acquire data.

User Scenario
The properties that you define for your device appear to users as properties of the video source
object associated with the video input object. The toolbox defines the properties of the video input
object, which represent general properties that are common to all image acquisition devices.

To view the device-specific properties you define, get a handle to the video source object and use the
get function. To set the value of device-specific properties you define, get a handle to the video
source object and use the set function. For example, this code creates a video input object and uses
the getselectedsource function to get a handle to the currently selected video source object. With
this handle, you can then use the get command to view the properties of the video source object.

vid = videoinput('winvideo',1)
src = getselectedsource(vid);
get(src)
General Settings:
 Parent = [1x1 videoinput]
 Selected = on
 SourceName = input1
 Tag =
 Type = videosource

 Device Specific Properties:
 Brightness = -10
 Contrast = 266
 Exposure = 1024
 ExposureMode = auto
 Hue = 0
 Saturation = 340
 Sharpness = 40

Suggested Algorithm
When a user calls the videoinput function, the engine calls the getDeviceAttributes() function
to set up any device-specific properties you have defined for the device. The engine passes several
arguments to your adaptor's getDeviceAttributes() function:

void getDeviceAttributes(const imaqkit::IDeviceInfo* deviceInfo,
 const char* acqFormat,

6 Defining Device-Specific Properties

6-2

 imaqkit::IPropFactory* devicePropFact,
 imaqkit::IVideoSourceInfo* sourceContainer,
 imaqkit::ITriggerInfo* hwTriggerInfo)

Argument Data Type Description
deviceInfo Handle to a IDeviceInfo object Specifies the image acquisition device
acqformat Character vector Specifies the video format or the path

to a device configuration file
devicePropFact Handle to a IPropFactory

object
Provides member functions used to
create properties

sourceContainer Handle to a IVideoSourceInfo
object

Defines the video sources available
with this device, described in
“Identifying Video Sources” on page 4-
7

hwTriggerInfo Handle to a ITriggerInfo
object

Specifies hardware triggers. The
toolbox handles the other two trigger
types (immediate and manual)
automatically.

The algorithm for getDeviceAttributes() typically includes these steps:

1 Determine the device the user wants to establish a connection with, specified by device ID.
2 Determine the format the user wants to use with the device, specified by format name (or the

path of a camera file). To get format information, retrieve the IDeviceFormat object associated
with the format from the IDeviceInfo object.

3 Create any device-specific properties. You create a property object appropriate to the data type
of the property and store the property object in the device-specific property container — see
“Creating Device Properties” on page 6-4.

4 Find all trigger configurations supported by the device and store the information in the
ITriggerInfo object — see “Supporting Hardware Triggers” on page 5-22.

There are several ways your adaptor can determine this property, source, and trigger information:

• By querying the device SDK at run-time
• By reading information from an imaging device file (IMDF). If you know the device information in

advance, you can store it in an IMDF file using an XML-based markup language. This section
describes how to read information from an IMDF file. To learn how to create an IMDF file, see
“Using the IMDF Markup Language” on page 7-2.

• A mixture of both methods.

 Defining Device-Specific Properties

6-3

Creating Device Properties
To define properties for a device, follow this procedure:

1 Create the property using the appropriate IPropFactory member function for the data type.
The engine passes in a handle to a IPropFactory object to the getDeviceAttributes()
function.

For example, to create a property of type double, use the createDoubleProperty() method
of the IPropFactory object, specifying the property name and default value as arguments.

hprop = devicePropFact->createDoubleProperty("Brightness",100)

The IPropFactory class supports functions to create properties of various data types — see
“Selecting the Property Creation Function” on page 6-4.

2 Specify if a user can modify the property, using the setPropReadOnly() method of the
IPropFactory object. Use one of the following constants (defined in IEngine.h):
READONLY_ALWAYS, READONLY_NEVER, and READONLY_WHILE_RUNNING. For example,

devicePropFact->setPropReadOnly(hProp,
 imaqkit::propreadonly::READONLY_WHILE_RUNNING);

3 Add the property to the device-specific property container, using the addProperty() method of
the IPropFactory object. For example,

devicePropFact->addProperty(hProp);

where hProp is a handle to the property you created in step 1.

Selecting the Property Creation Function
The IPropFactory() object supports functions that you can use to create properties of various data
types, including:

• int
• double
• character vector
• Enumerated types

For example, use the createDoubleProperty() function to create a property whose value is of
type double.

hprop = devicePropFact->createDoubleProperty("MyDoubleProp",2.5)

For the int and double types, you can also specify properties that have pairs of values or values
within a defined range. For example, this code creates an integer property with upper and lower
bounds.

hprop = devicePropFact->createIntProperty("MyBoundedIntProp",
 0,100,50)

To create a property with enumerated values, use createEnumProperty(), specifying the property
name, and one enumeration, for example,

6 Defining Device-Specific Properties

6-4

hprop = devicePropFact->createEnumProperty("MyEnum",
 "green",1)

You then add additional properties using addEnumValue().

For more information about the IPropFactory class, see the Image Acquisition Toolbox Adaptor Kit
API Reference documentation.

Creating Property Help
You can use IMDF files to define help text for the device-specific properties you create. For more
information, see “Specifying Help in an IMDF File” on page 7-5.

Example getDeviceAttributes() Function
The following example presents a skeletal implementation of a getDeviceAttributes() function.
The intent of this example is to show how to use adaptor kit objects to specify video sources and
properties of various types.

This code does not read source, property, or trigger information from an IMDF file. For information
about this topic, see “Using the IMDF Markup Language” on page 7-2.

1 Add the following code to the getDeviceAttributes() function in the adaptor. You created a
skeletal version of this function in “Identifying Video Sources” on page 4-7. This code creates
several properties of various types.
 void* hProp; // Declare a handle to a property object.

 // Create a property of type double with a default value
 hProp = devicePropFact->createDoubleProperty("MyDoubleProp",2.5);

 // Specify when the property value can be modified.
 devicePropFact->setPropReadOnly(hProp,
 imaqkit::imaqengine::READONLY_ALWAYS);

 // Add the property to the device-specific property container.
 devicePropFact->addProperty(hProp);

 // Create a bounded int property with maximum and minimum values
 hProp = devicePropFact->createIntProperty("MyBoundedIntProp",
 0, 100, 50);

 // Specify when the property value can be modified.
 devicePropFact->setPropReadOnly(hProp,
 imaqkit::imaqengine::READONLY_NEVER);

 // Add the property to the device-specific property container.
 devicePropFact->addProperty(hProp);

 // Create an enumerated property
 hProp = devicePropFact->createEnumProperty("MyEnumeratedProp",
 "green", 1);

 // Add additional enumerations
 devicePropFact->addEnumValue(hProp, "blue", 2);
 devicePropFact->addEnumValue(hProp, "red", 3);

 // Specify when the property value can be modified.
 devicePropFact->setPropReadOnly(hProp,
 imaqkit::imaqengine::READONLY_WHILE_RUNNING);

 // Add the property to the device-specific property container.
 devicePropFact->addProperty(hProp);

 Creating Device Properties

6-5

2 Compile and link your adaptor to create the DLL.
3 Start the MATLAB software.
4 Create a video input object for your adaptor.

vid = videoinput('mydevice',1)
5 Use the getselectedsource function to get a handle to the video source object and view the

device-specific properties you created.

src = getselectedsource(vid);
get(vid)
General Settings:
 Parent = [1x1 videoinput]
 Selected = on
 SourceName = input1
 Tag =
 Type = videosource

 Device Specific Properties:
 MyDoubleProp = 2.5
MyBoundedIntProp = 100
MyEnumeratedProp = green

6 Defining Device-Specific Properties

6-6

Defining Hardware Trigger Configurations
To define hardware trigger configurations, use the addConfiguration() function of the
ITriggerInfo object. The engine passes a handle to an ITriggerInfo object to your adaptor's
getDeviceAttributes() function.

When you create a hardware trigger configuration, you specify:

• Name of the source of the trigger
• ID of the trigger source
• Name of the condition that triggers an acquisition
• ID of the trigger condition

For example,

hwTriggerInfo->addConfiguration("MyTriggerSource", 1,
 "MyTriggerCondition",2)

 Defining Hardware Trigger Configurations

6-7

Implementing Get and Set Support for Device-Specific
Properties

After connecting to a device through your adaptor, users might want to view or modify values of the
properties of the device. For example, a user might adjust the value of the Brightness property or
retrieve the current value of the Temperature property. (For information about how to define the
properties you want to expose to users, see “Creating Device Properties” on page 6-4.)

To receive notification from the engine when a user wants to view or modify a property, associate a
listener object with the property. The toolbox defines two types of listener classes: get listeners that
respond to get commands and set listeners that respond to set commands.

To provide support for getting and setting property values, follow this procedure:

1 Define a listener class of the appropriate type. The toolbox defines two abstract classes, one for
get listeners and one for set listeners, from which you derive your class.

2 Implement the virtual function required by the class.
3 Associate an instance of your listener class with the property.

The following sections describe how to set up get listeners on page 6-8 and set listeners on page 6-
11 and in your adaptor.

Setting Up Get Listeners in Your Adaptor
To receive notification from the engine when a user requests the current value of a property using the
get command:

1 Define a get listener class, deriving it from the IPropCustomGetFcn abstract class—see
“Defining a Get Listener Class” on page 6-8.

2 Implement the getValue() virtual function in your listener class—see “Creating the getValue()
Function for Your Class” on page 6-9.

3 Associate an instance of your listener class with a property—see “Associating Get Listeners with
Properties” on page 6-10.

Defining a Get Listener Class

Create a get listener class, deriving it from the abstract class IPropCustomGetFcn, as shown in the
following example.

In this example, the constructor accepts a handle to an IAdaptor object. Because the toolbox
establishes listeners on a per-instance basis, passing this handle can be helpful, but it is not a
requirement.

The IPropCustomGetFcn class defines one virtual function: the getValue() member function. In
this function, you define how your adaptor responds when a user requests the current value of a
property. For more information about the getValue() function, see “Creating the getValue()
Function for Your Class” on page 6-9.

#include "mwadaptorimaq.h"
#include "MyDeviceImaq.h" // For this example

class MyDevicePropGetListener : public IPropCustomGetFcn

6 Defining Device-Specific Properties

6-8

{
public:

 // Constructor/Destructor
 MyDevicePropGetListener(MyDeviceAdaptor* parent):
 _parent(parent) {}

 virtual ~MyDevicePropGetListener() {};

 virtual void getValue(imaqkit::IPropInfo* propertyInfo,
 void* value);

private:

 // Declare handle to parent as member data.
 MyDeviceAdaptor* _parent;

};

Creating the getValue() Function for Your Class

When a user requests the current value of a property, the engine calls the getValue() function of
the get listener class associated with the property.

Your getValue() function must accept two parameters:

void getValue(IPropInfo* propertyInfo, void* value)

• propertyInfo is a handle to an IPropInfo object.—The IPropInfo class is the interface that
lets you get information about the property. For example, using IPropInfo functions you can
retrieve the property name, its storage type and its default value. This information is useful if you
have a generic listener class that handles multiple properties.

• value is a pointer to the location in memory where your adaptor stores the requested property
value.—The engine passes this value as a void*. Your getValue() function must cast the value
to the appropriate C++ data type. The following table tells which C++ data type to cast to for all
property types supported by the adaptor kit.

imaqkit::PropertyTypes C++ Data Type
CHARACTER_VECTOR char**
DOUBLE double*
INT int*
DOUBLE_ARRAY imaqkit::PropertyTypes::NDoubles*
INT_ARRAY imaqkit::PropertyTypes::NInts*

For nonscalar data types, character vectors, double arrays, and integer arrays, your listener class
must allocate sufficient memory for the current property value using the new[] operator. The
engine deletes this memory, calling delete[]. An example using a character vector property is:

char** returnStr = reinterpret_cast<char**>(value);
*returnStr = imaqkit::imaqmalloc(sizeof(char) * (stringLength));
strcpy(*returnStr, currentPropertyValueString);

 Implementing Get and Set Support for Device-Specific Properties

6-9

Suggested Algorithm for a getValue() Function

The design of the getValue() function varies with the needs of your device and the facilities offered
by its SDK. For example, you could create one get listener class that handles value queries for all
properties in a particular property container (general or device-specific). In this case, the
getValue() function includes a switch statement with cases that handle each individual property.

Alternatively, define a separate get listener class for each property or each property storage type.
Then, the engine calls the specific listener for the property specified.

You also can define get listener classes that fit the way the device SDK organizes property
configuration. For example, if an SDK provides one function to configure all device properties, you
can define a get listener class for these properties.

Example

This example shows an implementation of a getValue() function for integer types:
void MyDevicePropGetListener::getValue(IPropInfo* propertyInfo,
 void* value)
{

 // Get property name from the IPropInfo object.
 const char* propname = propertyInfo->getPropertyName();

 // Get the value using whatever facility your device's SDK provides.
 reinterpret_cast<const int>(value) = sdk_function_get();

 // For debug purposes only.
 imaqkit::adaptorWarn("In listener. Property name is %s\n",propname);
}

Associating Get Listeners with Properties

To set up a listener for a property, you associate the listener object with the property in the property
container. The following example shows how to add get listeners for all device-specific properties in
the adaptor property container. Adaptor writers typically set up property listeners in their adaptor
class constructor—see “Implementing Your Adaptor Class Constructor” on page 4-8.

1 Get a handle to the appropriate property container object.

The IEngine object has two member functions that return handles to property containers
(IPropContainer objects). The example calls the IEngine class
getAdaptorPropContainer() member function to get the device-specific property container:

imaqkit::IPropContainer* adaptorPropContainer =
 getEngine()->getAdaptorPropContainer();

2 Add a get listener to a property in the container, using the IPropContainer object
setCustomGetFcn() function. As arguments, specify the property name and a handle to the
listener object.

Note Because the toolbox deletes each instance of a listener object when a user deletes the
video input object, associate a new instance of a listener object with each property.

The following example iterates through all properties in the adaptor property container,
associating a get listener object with each one.

6 Defining Device-Specific Properties

6-10

void MyDeviceAdaptor::MyDeviceAdaptor()
{
 // get a handle to the property container
 IPropContainer* propContainer =
 getEngine()->getAdaptorPropContainer();

 // Determine the number of properties in the container.
 int numDeviceProps = propContainer->getNumberProps();

 // Retrieve the names of all the properties in the container
 const char **devicePropNames = new const
 char*[numDeviceProps];
 propContainer->getPropNames(devicePropNames);

 // Create a variable to point to a property get listener object.
 MyDevicePropGetListener* getListener;

 // For each property in the container...
 for (int i = 0; i < numDeviceProps; i++){

 // Create a get listener object...
 getListener = new MyDevicePropGetListener(this);

 // and associate it with a specific property.
 propContainer->setCustomGetFcn(devicePropNames[i], getListener);
 }

 // clean up the array of property names.

 delete [] devicePropNames;

}

Setting Up Set Listeners in Your Adaptor
To receive notification from the engine when a user changes the value of a property using the set
command:

1 Define a set listener class, deriving it from the IPropPostSetListener abstract class—see
“Defining a Set Listener Class” on page 6-11.

2 Implement the notify() virtual function in your set listener class—see “Creating the notify()
Function for Your Class” on page 6-12.

3 Associate an instance of your set listener class with the property—see “Associating Set Listeners
with Properties” on page 6-13.

Defining a Set Listener Class

Create a set listener class, deriving it from the abstract class IPropPostSetListener, as shown in
the following example. (The name of the class includes the word Post because the toolbox notifies
listeners after it updates the property value stored in the container.)

In this example, the constructor accepts a handle to an IAdaptor object. Because the toolbox
establishes listeners on a per-instance basis, passing this handle can be helpful, but it is not a
requirement.

The IPropPostSetListener class defines one virtual function: the notify() member function. In
this function, you define how your adaptor responds when a user changes the value of a property. For
more information, see “Creating the notify() Function for Your Class” on page 6-12.

#include "mwadaptorimaq.h"
#include "MyDeviceImaq.h" // For this example

 Implementing Get and Set Support for Device-Specific Properties

6-11

class MyDevicePropSetListener : public IPropPostSetListener
{
public:

 // Constructor/Destructor
 MyDevicePropSetListener(MyDeviceAdaptor* parent):
 _parent(parent) {}

 virtual ~MyDevicePropSetListener() {};

 virtual void notify(imaqkit::IEnginePropInfo* propertyInfo,
 void* newValue);

private:

 // Declare handle to parent as member data
 MyDeviceAdaptor* _parent;

 // Property Information object.
 imaqkit::IPropInfo* _propInfo;

 // The new value for integer properties.
 int _lastIntValue;

 // The new value for double properties.
 double _lastDoubleValue;

 // The new value for character vector properties.
 char* _lastStrValue;

};

Creating the notify() Function for Your Class

When a user calls the set command to change the value of a property, the engine calls the notify()
function of the set listener class associated with the property.

A set listener class notify() function must accept two parameters:

void notify(IPropInfo* propertyInfo, void* newValue)

• propertyInfo is a handle to an IPropInfo object—The IPropInfo class is the interface that
lets you get information about the property. For example, using IPropInfo functions you can get
the property name, its storage type, and its default value.

• newValue is a pointer to the new property value—This engine passes this value as a void*. Your
notify() function must cast the value to the appropriate C++ data type. The following table tells
which C++ data type to cast to for all property types supported by the adaptor kit.

imaqkit::PropertyTypes C++ Data Type
CHARACTER_VECTOR char*
DOUBLE double*
INT int*
DOUBLE_ARRAY imaqkit::PropertyTypes::NDoubles*

6 Defining Device-Specific Properties

6-12

imaqkit::PropertyTypes C++ Data Type
INT_ARRAY imaqkit::PropertyTypes::NInts*

Suggested Algorithm for notify() Function

The design of the notify() function varies with the needs of your device and the facilities offered by
its SDK. For example, you can create one set listener class that handles all value changes for all
properties in a particular property container (general or device-specific). In this case, the notify()
function includes a switch statement with cases that handle each individual property.

Alternatively, you could define a separate set listener class for each property or each property storage
type. Then, the engine calls the specific listener for the property specified.

You also can define set listener classes that fit the way the SDK organizes property configuration. For
example, if an SDK provides one function to configure all device properties, you can define a set
listener class for these properties.

Example

This example shows an implementation of a notify() function for integer types:
void MyDevicePropSetListener::notify(IPropInfo* propertyInfo,
 void* newValue)
{

 // Get property name from the IPropInfo object.
 const char* propname = propertyInfo->getPropertyName();

 // Cast newValue to the proper type
 newVal = *reinterpret_cast<const int*>(newValue);

 // ***
 // Insert calls to device SDK to apply value to hardware.
 // ***

 // For debug purposes only.
 imaqkit::adaptorWarn("In listener. Property name is %s\n",propname);

}

Associating Set Listeners with Properties

To set up a listener for a property, you associate the listener object with the property in the property
container. The following example shows how to add set listeners for all the device-specific properties
in the adaptor property container. Adaptor writers typically set up property listeners in their adaptor
class constructor—see “Implementing Your Adaptor Class Constructor” on page 4-8.

1 Get a handle to the appropriate property container object.

The IEngine object has two member functions that return handles to property containers
(IPropContainer objects). The example calls the IEngine class
getAdaptorPropContainer() member function to get the device-specific property container:

imaqkit::IPropContainer* adaptorPropContainer =
 getEngine()->getAdaptorPropContainer();

2 Add a set listener to a property in the container, using the IPropContainer object's
addListener() function. As arguments, specify the property name and a handle to the listener
object.

 Implementing Get and Set Support for Device-Specific Properties

6-13

Note Because the toolbox deletes each instance of a listener object when a user deletes the
video input object, associate a new instance of a listener object with each property.

The following example iterates through all properties in the adaptor property container,
associating a set listener object with each property:

void MyDeviceAdaptor::MyDeviceAdaptor()
{
 // get a handle to the property container
 IPropContainer* propContainer =
 getEngine()->getAdaptorPropContainer();

 // Determine the number of properties in the container.
 int numDeviceProps = propContainer->getNumberProps();

 // Retrieve the names of all the properties in the container
 const char **devicePropNames = new const
 char*[numDeviceProps];
 propContainer->getPropNames(devicePropNames);

 // Create a variable to point to a property listener object.
 MyDevicePropSetListener* setListener;

 // For each property in the container...
 for (int i = 0; i < numDeviceProps; i++){

 // Create a set listener object...
 setListener = new MyDevicePropSetListener(this);

 // and associate it with a specific property.
 propContainer->addListener(devicePropNames[i], setListener);
 }

 // clean up the array of property names.

 delete [] devicePropNames;

}

6 Defining Device-Specific Properties

6-14

Storing Adaptor Information in an IMDF
File

This chapter describes how to store information about adaptor properties in an Image Device File
(IMDF) in an XML based format.

• “Using the IMDF Markup Language” on page 7-2
• “Creating an IMDF File: Toplevel Elements” on page 7-4
• “Specifying Help in an IMDF File” on page 7-5
• “Specifying Device Information” on page 7-9
• “Specifying Property Information” on page 7-12
• “Specifying Format Information” on page 7-15
• “Specifying Hardware Trigger Information” on page 7-17
• “Specifying Video Sources” on page 7-19
• “Defining and Including Sections” on page 7-20

7

Using the IMDF Markup Language
This chapter describes how to use an XML-based markup language to specify source, property, and
hardware trigger information in an Imaging Device File (IMDF).

Note Creating an IMDF is required. Using an IMDF file can simplify the coding of your adaptor's
getDeviceAttributes() function. In addition, it is the only convenient way to make help text
available for the device-specific properties your adaptor creates.

User Scenario
When a user calls the imaqhwinfo function, the toolbox searches for adaptor DLLs. When it finds a
DLL, it also looks for a matching IMDF file in the same directories. If found, the engine stores path
information to the IMDF file. An IMDF file must reside in the same directory as your DLL and
the .imdf file extension, such as demoimaq.imdf.

When a user calls the videoinput function to create a video input object, the engine reads and
processes the IMDF file. When it reads the file, it processes the property, trigger, and source
information specified at the top-level of the file. (To understand the hierarchical arrangement of an
IMDF file, see “Elements of the IMDF Markup Language” on page 7-2.)

After reading all the top-level elements, the engine looks for a device element that matches the device
the user specified in the videoinput function. If found, the engine then looks for video format
element in the device element.

The engine then calls your adaptor's getDeviceAttributes() function, as described in
“Implementing Get and Set Support for Device-Specific Properties” on page 6-8, to set up device
properties.

Elements of the IMDF Markup Language
The following figure shows the hierarchical relationship of the elements of the XML-based markup
language for IMDF files. The figure shows which elements can be children of other elements.
Elements at the top-level of an IMDF file (elements that are children of the ImageAcquisitionInfo
element apply to an entire adaptor. Elements that are children of a Device element apply only to that
device. To simplify the diagram, all possible subordinate elements are not always shown for elements
below the top-level. When used in an IMDF file, elements are called nodes.

7 Storing Adaptor Information in an IMDF File

7-2

Hierarchy of IMDF Elements

 Using the IMDF Markup Language

7-3

Creating an IMDF File: Toplevel Elements
The ImageAcquisitionInfo element must be the root node of all IMDF files. Your IMDF file must
begin with the ImageAcquisitionInfo node and end with the corresponding
ImageAcquisitionInfo terminator, as in this example.

<ImageAcquisitionInfo>
.
.
.
</ImageAcquisitionInfo>

The following table lists the toplevel IMDF elements that you can specify as children of the
ImageAcquisitionInfo element. The table lists the elements in the order they must appear in an
IMDF file. Note that element tag names are case-sensitive.

Element Description
<Help> Defines the section of an IMDF file in which you specify help text for

device-specific properties — see “Specifying Help in an IMDF File” on page
7-5. This is an optional element. If specified, an IMDF file can contain
only one Help element.

<Property> Defines properties of a device — see “Specifying Property Information” on
page 7-12. This is an optional element. An IMDF file can contain multiple
Property elements.

<Include> Convenient way to specify another element or group of elements as
children of another element — see “Defining and Including Sections” on
page 7-20. This is an optional element. An IMDF file can contain multiple
Include elements.

<Source> Defines the source of video data — see “Specifying Video Sources” on page
7-19. This is an optional element. An IMDF file can contain multiple
Source elements.

<TriggerInfo> Defines hardware trigger information — see “Specifying Hardware Trigger
Information” on page 7-17. This is an optional element. An IMDF file can
contain only one TriggerInfo element.

<Device> Specifies information about a device — see “Specifying Device
Information” on page 7-9. This is an optional element. An IMDF file can
contain multiple Device elements.

7 Storing Adaptor Information in an IMDF File

7-4

Specifying Help in an IMDF File
To define help text for adaptor properties in an IMDF file, use the Help element. You can include only
one Help node in an IMDF file and it must be a child of the root node.

As children of the Help node, you create AdaptorHelp nodes that contain the help text for a
particular property. You use the name attribute of the AdaptorHelp element to specify which
property the help is associated with.

You can optionally include device-specific content in the help text. This text appears only when a
particular device is selected. Use one or more DeviceHelp nodes to add device-specific help to an
AdaptorHelp node. You use the device attribute of the DeviceHelp element to specify when the
text should appear. You can also create see also references for your property help using SeeAlso
nodes.

The following example outlines how to use these elements to create property help. The words in
italics represent text that you must define.

<ImageAcquisitionInfo>
 <Help>
 <AdaptorHelp property=propertyname>
 Help text
 <DeviceHelp device=devicename>
 Device-specific help text
 </DeviceHelp>
 <SeeAlso>
 References to other properties
 </SeeAlso
 </AdaptorHelp>
 .
 .
 .
 </Help>
</ImageAcquisitionInfo>

The following table summarizes the tags you can use to define help. For more information, see these
topics.

• “User Scenario: Viewing Property Help” on page 7-6
• “Creating AdaptorHelp Nodes” on page 7-7

Element Description Attributes
<Help> Defines the help section in an IMDF

file. Must be child of the
ImageAcquisitionInfo node.

None

<AdaptorHelp> Defines the online help for a property.
The Help node can contain one or
more AdaptorHelp nodes.

property=name, where name is a
character vector specifying the
property name

<DeviceHelp> Specifies device-specific text in
property help. This element is
optional. An AdaptorHelp node can
contain multiple DeviceHelp nodes.

device=name, where name is a
character vector that identifies a
particular device

 Specifying Help in an IMDF File

7-5

Element Description Attributes
<SeeAlso> Defines the see also line in property

help. This element is optional. An
AdaptorHelp node can contain
multiple SeeAlso nodes.

None

User Scenario: Viewing Property Help
The purpose of using a Help element in an IMDF file is to create help text for device-specific
properties. A user of your adaptor can display the help text at the command line using the imaqhelp
command.

The following example shows how a user displays the help text for a device-specific property using
the imaqhelp command. To see how to create this help in an IMDF file, see “Creating AdaptorHelp
Nodes” on page 7-7.

The items in this list correspond to the numbered elements above.

1 Device-specific properties are properties of the video source object. The example creates the
video input object and then uses the getselectedsource function to get a handle to the video
source object.

7 Storing Adaptor Information in an IMDF File

7-6

2 The example uses the get function to display a list of device-specific properties.
3 Use the imaqhelp function to display help for one of the properties of the video source object.
4 The first line of the help lists the name of the property with its constraints, such as range and

permission.
5 The text of the help appears exactly as you enter it in the IMDF file. You include the text after the

AdaptorHelp tag.
6 The See Also line is created by the SeeAlso node.

Creating AdaptorHelp Nodes
This section describes how to create help text for a property using the set of help tags defined by the
IMDF DTD. The following example shows the IMDF entry for the Brightness property, displayed in
“User Scenario: Viewing Property Help” on page 7-6. The example sets the property attribute of the
AdaptorHelp tag to the name of a property.

Note Help text must start with a one-line summary. Make sure that each line of text is no longer than
80 characters.

<AdaptorHelp property="Brightness">
Specify the brightness, also called the black level.

Brightness describes the difference in intensity of light reflected from
or transmitted through an image independent of its hue and saturation.
For some devices, the value is expressed in IRE units * 100. For other
devices, the units are arbitrary. Refer to the device's documentation for
information.

Depending on the acquisition device, this property may have an associated
mode property allowing this value to be controlled automatically by the
device, or for it to be manually configured.

<SeeAlso>BrightnessMode.</SeeAlso>

</AdaptorHelp>

Including Device-Specific Help Text

To include help text that only appears for specific devices, use DeviceHelp elements.

In this example, the help text contains three device-specific sections. Note how the example sets the
device attribute of the DeviceHelp property to the name of a device.

<AdaptorHelp property="StrobeEnable">
Enables the strobe output and its timer.

Upon enabling the strobe output, it will start detection
of triggers and generate output as appropriate. Consult your
hardware manual for a detailed description of the strobe output.

<DeviceHelp device="PC2Vision">See also StrobeMode,
StrobeDuration, StrobeDelay, StrobePolarity,
StrobeAlignOnHs.
</DeviceHelp>

<DeviceHelp device="PCVisionPlus">See also StrobeMode,
StrobeDelay, StrobePolarity.

 Specifying Help in an IMDF File

7-7

</DeviceHelp>

<DeviceHelp device="PCRGB">For the PC-RGB, StrobeEnable only
enables the timing circuitry. The strobe output must still be
enabled with the StrobeOutputEnable property.

See also StrobeMode, StrobePolarity, StrobeDelay,
StrobeOutputEnable.
</DeviceHelp>

</AdaptorHelp>

7 Storing Adaptor Information in an IMDF File

7-8

Specifying Device Information
To specify information about a particular device in an IMDF file, use the Device element. You can
include as many Device nodes in an IMDF file as you want but they must all be children of the root
node.

In a Device node, you specify the name of the device as an attribute. The name is typically a
character vector defined by the device's SDK. Using other IMDF elements as children of the Device
node, you can specify information about device-specific properties, video formats, and trigger
information.

The following example outlines how to use these elements to create Device nodes. The words in
italics represent text you define.

<ImageAcquisitionInfo>
 <Device device=devicename>
 <VideoFormat name=formatname>
 </VideoFormat>

 <Property constraint=constraint_value
 deviceSpecific=true_or_false
 name=property_name
 readOnly=always_never_or_whileRunning
 type=cell_double_int_or_string
 min=minimum_value
 max=maximum_value
 optional=on_or_off
 default=default_value>
 </Property>

 <TriggerInfo>
 <TriggerSource id=ID name=string>
 <TriggerCondition id=ID name=string/>
 </TriggerSource>
 </TriggerInfo
 </Device>
 .
 .
 .
</ImageAcquisitionInfo>

The following table summarizes the elements that can be children of a Device node, in the order they
must be specified. For an example, see “Example: Device Node” on page 7-10.

Element Description Attributes
<VideoFormat> Specifies information about a video format.

This is an optional element. A Device
node can contain multiple VideoFormat
nodes.

name=formatname, where formatname
is a character vector that identifies a
particular device

<Include> Include a Section node in another node.
This is an optional element. A Device
node can contain multiple Include nodes.

tag=sectionname, where sectionname
is a character vector that identifies a
particular Section node

 Specifying Device Information

7-9

Element Description Attributes
<Section> Groups a set of nodes into a Section

node. This is an optional element. A
Device node can contain multiple
Section nodes.

name=sectionname, where sectionname
is the name you want to assign to the
group of nodes

<Property> Describes the properties of a device. This
is an optional element. A Device node can
contain multiple Property nodes.

See “Specifying Property Information”
on page 7-12.

<Source> Defines the source of video data. This is an
optional element.

See “Specifying Video Sources” on
page 7-19

<TriggerInfo> Provides information about hardware
triggers, such as source and condition.
This is an optional element.

Note: A Device node can contain only one
TriggerInfo node.

See “Specifying Hardware Trigger
Information” on page 7-17.

Example: Device Node
The following example creates a Device node containing property and trigger information. For more
information about the Property element, see “Specifying Property Information” on page 7-12. For
more information about the TriggerInfo element, see “Specifying Hardware Trigger Information”
on page 7-17.

<Device name="PCVision">
 <Property optional="on"
 constraint="enum"
 deviceSpecific="true"
 name="SyncSource"
 readOnly="whileRunning"
 type="string">
 <EnumConstraintValue id="1" name="strippedSync" />
 <EnumConstraintValue id="2" name="separateSync" />
 <EnumConstraintValue id="3" name="compositeSync" />
 <EnumConstraintValue id="4" name="variableScan" />
 </Property>

 <Property optional="on"
 constraint="enum"
 deviceSpecific="true"
 name="FieldStart"
 readOnly="whileRunning"
 type="string">
 <EnumConstraintValue id="0" name="evenField" />
 <EnumConstraintValue id="1" name="oddField" />
 </Property>

 <TriggerInfo>
 <TriggerSource id="1" name="extTrig">
 <TriggerCondition id="0" name="risingEdge"/>
 <TriggerCondition id="1" name="fallingEdge"/>
 </TriggerSource>

7 Storing Adaptor Information in an IMDF File

7-10

 </TriggerInfo>
</Device>

 Specifying Device Information

7-11

Specifying Property Information
To specify property information in an IMDF file, use the Property element. You can include as many
Property nodes in an IMDF file as you want. Property nodes can be children of the root node, a
Device node, or a Videoformat node. Property nodes can also be children of Section nodes.

Note Property nodes that are children of the root node affect all devices accessed through the
adaptor. Property nodes that are children of a Device or VideoFormat node affect only that device
or video format.

You use attributes of the Property element to specify characteristics of the property, such as its
name, type, and constraints. For more information about Property attributes, see “Specifying
Property Element Attributes” on page 7-12.

The following example outlines how to use these elements to specify property information. The
example shows the Property node as a child of the root node but you use it the same way as a child
of a Device or VideoFormat node. The words in italics represent text you define.

<ImageAcquisitionInfo>
 <Property constraint=constraint_value
 deviceSpecific=true_or_false
 name=property_name
 readOnly=always_never_or_whileRunning
 type=cell_double_int_or_string
 min=minimum_value
 max=maximum_value
 optional=on_or_off
 default=default_value>
 </Property>
 .
 .
 .
</ImageAcquisitionInfo>

Specifying Property Element Attributes
The following table lists the attributes of a Property node in alphabetical order. The table gives a brief
description of the property and lists which properties are required and which are optional.

Attribute Description Required
constraint Specifies the constraints on the property — see

“Specifying Values for the Constraint Attribute” on
page 7-13.

Required

default Default value for the property. Optional
deviceSpecific Boolean value. True if property is vendor-specific;

otherwise false.
Required

min Minimum allowable value Optional
max Maximum allowable value Optional
name Name of property Required

7 Storing Adaptor Information in an IMDF File

7-12

Attribute Description Required
optional If set to off, the property is created automatically

and added to the object when the IMDF file is
processed. If on, the adaptor must explicitly create
the property. The default is off.

Optional

readOnly Read-only status of property: always, never, or
whileRunning.

Required

type Data type of the property: cell, double, int or
character vector.

Required

Specifying Values for the Constraint Attribute

Constraints specify information about what are valid values for a property. For example, to specify
that a property only accepts positive values, use the positive constraint value, as follows:

constraint=positive

The following table lists all the possible values for the constraint attribute in alphabetical order.

Constraint Value Description
bounded Property has both a minimum and maximum value. If you set the

constraint attribute to bounded, you must assign values to the min and
max attributes.

enum Property is an enumerated value. If set, the Property node must contain
one or more EnumConstraintValue nodes. See “Specifying Enumerated
Values” on page 7-13.

inforpositive Value must be positive or infinite
none No constraints
positive Value must be positive
zeroinforpositive Value must be greater than zero or infinite
zeroorpositive Value must be greater than zero

Specifying Enumerated Values

If your property uses enumerated values, you must set the value of the constraint attribute to
enum, the type attribute to character vector, and create EnumConstraintValue elements for
each enumeration. The EnumConstraintValue nodes are children of the Property node.

When you create the EnumConstraintValue nodes, you specify two attributes:

• Value ID
• Value name

This example defines the property StrobeEnable. The constraint attribute is set to enum. The name
attribute of the EnumConstraintValue nodes defines the possible values of this enumeration: on
and off.

<Property optional="on"
 constraint="enum"
 deviceSpecific="true"

 Specifying Property Information

7-13

 name="StrobeEnable"
 readOnly="whileRunning"
 type="string">
 <EnumConstraintValue id="0" name="off" />
 <EnumConstraintValue id="1" name="on" />
</Property>

7 Storing Adaptor Information in an IMDF File

7-14

Specifying Format Information
To specify the video formats supported by a particular device in an IMDF file, use the VideoFormat
element. VideoFormat nodes must be children of Device nodes. In the VideoFormat node, you
specify the name of the format as the value of an attribute of the element.

You can also specify format-specific property and trigger information, if necessary. A VideoFormat
node can have Property and TriggerInfo nodes as children. (VideoFormat nodes can also have a
Section node as a child — see “Defining and Including Sections” on page 7-20.)

The following example outlines how to use the VideoFormat node. The words in italics represent
text that you define.

<ImageAcquisitionInfo>
 <Device device=devicename>
 <VideoFormat name=formatname>
 <Property constraint=constraint_value
 deviceSpecific=true_or_false
 name=property_name
 readOnly=always_never_or_whileRunning
 type=cell_double_int_or_string
 min=minimum_value
 max=maximum_value
 optional=on_or_off
 default=default_value>
 </Property>

 <TriggerInfo>
 </TriggerInfo>
 </VideoFormat>
 </Device>
 .
 .
 .
</ImageAcquisitionInfo>

The following table lists the tags used to specify video format information.

Element Description Attributes
<Include> Include one or more nodes grouped

into a Section node. This is an
optional element. A VideoFormat
node can contain multiple Include
nodes.

tag=sectionname, where
sectionname is a character vector
that identifies a particular Section
node

<Section> Groups one or more nodes into a
Section node. This is an optional
element. A VideoFormat node can
contain multiple Section nodes.

name=sectionname, where
sectionname is the name you want
to assign to a particular Section
node

<Property> Describes the properties of a video
format. This is an optional element. A
VideoFormat node can contain
multiple Property nodes.

See “Specifying Property
Information” on page 7-12.

 Specifying Format Information

7-15

Element Description Attributes
<Source> Defines the source of video data. This

is an optional element.
See “Specifying Video Sources” on
page 7-19

<TriggerInfo> Trigger information specific to a
particular video format. This is an
optional element. A VideoFormat
node can only contain one
TriggerInfo node.

See “Specifying Hardware Trigger
Information” on page 7-17.

7 Storing Adaptor Information in an IMDF File

7-16

Specifying Hardware Trigger Information
To specify hardware trigger information in an IMDF file, use the TriggerInfo node. A
TriggerInfo node can be the child of the ImageAcquisitionInfo, Device, VideoFormat, and
Section nodes.

You specify the source of the hardware trigger in a TriggerSource node that is the child of the
TriggerInfo node. You specify the conditions under which trigger fires in one or more
TriggerCondition nodes, which are children of the TriggerSource node.

The following example outlines how to use these elements to specify trigger information. The words
in italics represent text you define.

<ImageAcquisitionInfo>
 <Device device=devicename>

 <TriggerInfo>
 <TriggerSource id=ID name=triggername>
 <TriggerCondition id=ID name=conditionname>
 </TriggerInfo>

 </Device>
 .
 .
 .
</ImageAcquisitionInfo>

The following table lists the elements used to specify hardware trigger information.

Element Description Attributes
<TriggerInfo> Defines information about a

hardware trigger.
None

<TriggerSource> Defines the source of the
hardware trigger. A
Triggerinfo node must
contain or more
TriggerSource nodes.

See “Specifying Trigger
Sources” on page 7-17.

<TriggerCondition> Defines a condition that must be
met before a hardware trigger
fires. A TriggerSource node
can contain zero or more
TriggerCondition nodes.

See “Specifying Trigger
Conditions” on page 7-18.

Specifying Trigger Sources
When you define a hardware trigger, you must define the source (or sources) of the hardware trigger
in one or more TriggerSource nodes. In a TriggerSource node, you specify values for two
attributes: name and id. The value of the name attribute is visible to users of the toolbox in the
display returned by the toolbox triggerinfo function. It is typically set to some value that is
recognized by the device's SDK.

<TriggerSource id="1" name="extTrig">
</TriggerSource>

 Specifying Hardware Trigger Information

7-17

Specifying Trigger Conditions
When you define a hardware trigger, you must define the conditions that must be met before the
trigger fires. The parent TriggerSource node specifies the trigger. In a TriggerCondition node,
you specify values for two attributes: name and id. The value of the name attribute is visible to users
of the toolbox in the display returned by the toolbox triggerinfo function. It is typically set to some
value that is recognized by the device's SDK.

<TriggerCondition id="1" name="risingEdge">
</TriggerCondition>

7 Storing Adaptor Information in an IMDF File

7-18

Specifying Video Sources
To specify the video source in an IMDF file, use the Source element. A Source node can only be the
child of the IMDF root element and it cannot have any child nodes of its own.

When you create a Source node, you must specify values for two attributes: name and id. In the
name attribute, you specify the name of the source as it appears in the video source object's Name
property. The id is typically set to some value that is recognized by the vendor's SDK. The id is only
used by the adaptor and needs only to be unique between sources.

The following example outlines how to create a Source node. The words in italics represent text you
define.

<ImageAcquisitionInfo>

 <Source id=ID name=sourcename>
 </Source>
 .
 .
 .
</ImageAcquisitionInfo>

 Specifying Video Sources

7-19

Defining and Including Sections
You can gather one or more Property or TriggernInfo nodes into a group by using the Section
element. A Section node can contain one or more Property nodes or a single TriggerInfo node
or another Section node. A Section node can be the child of a Device, or VideoFormat node.
Using the Include element, a Section node can be indirectly be a child of the root node, Device,
VideoFormat, Section, or TriggerInfo nodes.

Section nodes can simplify an XML file. You can reuse node definitions without repeating the XML
statements. For example, you can define common elements, such as video formats, that can be shared
by several Device nodes in the XML file.

The following example outlines how to create a Section node and use it in an IMDF file. The words
in italics represent text you define.

<ImageAcquisitionInfo>
 <Device device=devicename1>
 <Section name=sectionname>
 <Property>
 </Property>

 <TriggerInfo>
 </TriggerInfo
 </Section>
 <Property>
 </Property>
 </Device>
 <Device device=devicename2>
 <Include tag=sectionname/>
 </Device>
 .
 .
 .
</ImageAcquisitionInfo>

7 Storing Adaptor Information in an IMDF File

7-20

Test Suite for Adaptor Writers

• “Testing Adaptors or Hardware” on page 8-2
• “Creating a Stub Adaptor Test Procedure” on page 8-3
• “Specifying Format of Image Data Test Procedure” on page 8-6
• “Implementing the Acquisition Thread Function Test Procedure” on page 8-7
• “Supporting ROIs Test Procedure” on page 8-8
• “Specifying Device Driver Identification Information Test Procedure” on page 8-9
• “Using the Test Suite Functions and Properties” on page 8-11

8

Testing Adaptors or Hardware
As part of the Image Acquisition Toolbox Adaptor Kit, we now offer a test procedure and automated
tests for third-party adaptor developers and camera vendors to test adaptors and hardware against
the toolbox.

• Third-party adaptor writers can use this test suite to verify their adaptors.
• Camera vendors can use the automated tests to test their cameras against the Image Acquisition

Toolbox.

This documentation provides test procedure examples to use to test adaptors and cameras. It also
provides documentation of all the functions and properties included in this test class.

• “Creating a Stub Adaptor Test Procedure” on page 8-3
• “Specifying Format of Image Data Test Procedure” on page 8-6
• “Implementing the Acquisition Thread Function Test Procedure” on page 8-7
• “Supporting ROIs Test Procedure” on page 8-8
• “Specifying Device Driver Identification Information Test Procedure” on page 8-9
• “Using the Test Suite Functions and Properties” on page 8-11

8 Test Suite for Adaptor Writers

8-2

Creating a Stub Adaptor Test Procedure
As part of the Image Acquisition Toolbox Adaptor Kit, we now offer a test procedure and automated
tests for third-party adaptor developers and camera vendors to test adaptors and hardware against
the toolbox. This test procedure is part of that suite. For more information, see “Testing Adaptors or
Hardware” on page 8-2.

After creating a stub adaptor per instructions in “Creating a Stub Adaptor” in this Adaptor Kit
documentation, follow these steps to verify that the stub adaptor shows up in MATLAB.

Test Procedures Expected Results
In MATLAB, register the adaptor using the
following command:

imaqregister('AdaptorDllName')

where 'AdaptorDllName' is the adaptor dll
file name with the full path to the file.

The registration of the adaptor should work without
any errors or warnings.

Once verified, run the following command:

imaqreset

Run the following command:

imaqhwinfo

imaqhwinfo will output a list of available adaptors.
The adaptor being built should be listed in
InstalledAdaptors.

Run the following command:

imaqhwinfo('AdaptorName')

The details of the adaptor library are shown.
AdaptorDllName should be the full path to the
adaptor library. At this point DeviceIDs and
DeviceInfo should empty (1x0).

Once the device enumeration code has been added, follow these steps to verify the device
information.

Test Procedures Expected Results
Run the following command:

devInfo = imaqhwinfo
 ('AdaptorName')

The DeviceIDs and DeviceInfo fields should now
be populated. DeviceIDs should be from 1 to N
based on the number of devices added. DeviceInfo
is a MATLAB structure (or array of structures if
there are multiple devices).

 Creating a Stub Adaptor Test Procedure

8-3

Test Procedures Expected Results
Run the following command:

devInfo(:).DeviceInfo

DeviceInfo should show the information as follows
for each device:

DefaultFormat: '640x480'
DeviceFileSupported: 0
DeviceName: 'MyDevice'
DeviceID: 1
ObjectConstructor: 'videoinput
 ('mydeviceimaq', 1)'
SupportedFormats: {'640x480'
 '320x240'}

where,

DefaultFormat is the format for which the second
argument to addDeviceFormat is set to true.

DeviceFileSupported is true (1) if the device
supports device files.

DeviceName is the name of the device as defined in
createDeviceInfo.

DeviceID is the ID associated with the device as
defined in createDeviceInfo. This is usually 1.

ObjectConstructor is how a videoinput object for
that device is created in MATLAB.

SupportedFormats is a cell array of all supported
formats as defined using addDeviceFormat. It is
empty if DeviceFileSupported is true and no
formats were added by DeviceFormat.

After the adaptor class has been written, follow these steps to test the videoinput object creation
and destruction.

8 Test Suite for Adaptor Writers

8-4

Test Procedures Expected Results
Run the following command:

vidObj = videoinput
 ('AdaptorName')

The videoinput object should get created using
the first device found and the default format without
any error and its details should be displayed at the
MATLAB command prompt. This will not work if only
device files are supported. The details should be
similar to:
Summary of Video Input Object Using
 'MyDevice'.
Acquisition Source(s): MyDeviceSource is
 available.
Acquisition Parameters:
 'MyDeviceSource' is the current selected
 source.
 10 frames per trigger using the selected
 source.
 '640x480' video data to be logged upon
 start.
 Grabbing first of every 1 frame(s).
 Log data to 'memory' on trigger.
Trigger Parameters:
 1 'immediate' trigger(s) on start.
 Status: Waiting for start.
 0 frames acquired since starting.
 0 frames available for getData.

where MyDevice is the device connected.
Run the following commands:

delete(vidObj);
vidObj

The following message should get displayed:

Invalid Image Acquisition object.

This object is not associated with any hardware and
should be removed from your workspace using
clear.

Run the following commands:

vidObj = videoinput
 ('AdaptorName');
imaqreset;
vidObj

The following message should get displayed:

Invalid Image Acquisition object.

This object is not associated with any hardware and
should be removed from your workspace using
clear.

 Creating a Stub Adaptor Test Procedure

8-5

Specifying Format of Image Data Test Procedure
As part of the Image Acquisition Toolbox Adaptor Kit, we now offer a test procedure and automated
tests for third-party adaptor developers and camera vendors to test adaptors and hardware against
the toolbox. This test procedure is part of that suite. For more information, see “Testing Adaptors or
Hardware” on page 8-2.

After specifying the format of the image data per instructions in “Specifying the Format of the Image
Data” in this Adaptor Kit documentation, follow these steps to test specifying the format of the image
data.

Test Procedures Expected Results
Run the following commands:

vidObj = videoinput
 ('AdaptorName');
vidObj.VideoResolution
vidObj.VideoFormat

delete(vidObj);
clear vidObj;

The output should be the width and height (e.g. 640
480) of the frame to be acquired.

The output should indicate the Video Format (e.g.
MJPG_640x480).

To clean up after this step, delete and clear the
object:

delete(vidObj);
clear vidObj;

8 Test Suite for Adaptor Writers

8-6

Implementing the Acquisition Thread Function Test Procedure
As part of the Image Acquisition Toolbox Adaptor Kit, we now offer a test procedure and automated
tests for third-party adaptor developers and camera vendors to test adaptors and hardware against
the toolbox. This test procedure is part of that suite. For more information, see “Testing Adaptors or
Hardware” on page 8-2.

After implementing the acquisition thread function per instructions in “Implementing the Acquisition
Thread Function” in this Adaptor Kit documentation, follow these steps to test the acquisition thread
function.

Test Procedures Expected Results
Run the following commands:

vidObj = videoinput
 ('AdaptorName');
preview(vidObj)

A preview window should open and display the
acquired video. Verify that the video is getting
acquired as expected based on the VideoFormat
and VideoResolution. To close the preview
window, press the (x) button or type closepreview
at the command prompt.

To clean up after this step, delete and clear the
object.

Run the following command:

vidObj = videoinput
 ('AdaptorName');
start(vidObj);
wait(vidObj)
vidObj.FramesAcquired

The commands should execute without any error or
warning. vidObj.FramesAcquired will display the
number of acquired frames, which should be 10
unless the startup or period between frames is
lengthy.

To clean up after this step, delete and clear the
object.

 Implementing the Acquisition Thread Function Test Procedure

8-7

Supporting ROIs Test Procedure
As part of the Image Acquisition Toolbox Adaptor Kit, we now offer a test procedure and automated
tests for third-party adaptor developers and camera vendors to test adaptors and hardware against
the toolbox. This test procedure is part of that suite. For more information, see “Testing Adaptors or
Hardware” on page 8-2.

After implementing ROIs per instructions in “Supporting ROIs” in this Adaptor Kit documentation,
follow these steps to test region of interest (ROI).

Test Procedures Expected Results
Run the following commands:

vidObj = videoinput
 ('AdaptorName');
vidObj.ROIPosition =
 [xoffset yoffset x y];
frame = getsnapshot(vidObj);
size(frame);
image(frame);

where

xoffset: integer value that
 defines x offset
yoffset: integer value that
 defines y offset
x: new width
y: new height

For example, if the original VideoResolution
is [640 480], then define the new
ROIPosition as follows:

vidObj.ROIPosition =
 [100 100 320 240]

The output of size(frame) should display the new
ROI, for example [320 240]. The displayed image
should exhibit part of the full image that is expected
for an ROI of [100 100 320 240].

To clean up after this step, delete and clear the
object.

8 Test Suite for Adaptor Writers

8-8

Specifying Device Driver Identification Information Test
Procedure

As part of the Image Acquisition Toolbox Adaptor Kit, we now offer a test procedure and automated
tests for third-party adaptor developers and camera vendors to test adaptors and hardware against
the toolbox. This test procedure is part of that suite. For more information, see “Testing Adaptors or
Hardware” on page 8-2.

After specifying device driver identification information per instructions in “Specifying Device Driver
Identification Information” in this Adaptor Kit documentation, follow these steps to verify the device
driver identification information.

Test Procedures Expected Results
Run the following command:

vidObj = videoinput
 ('AdaptorName');
imaqhwinfo(vid)

The details of the device and device driver should be
displayed. It will be similar to:

AdaptorName: 'AdaptorName'
DeviceName: 'MyDevice'
MaxHeight: 280
MaxWidth: 120
TotalSources: 1
VendorDriverDescription:
 'MyDevice_Driver'
VendorDriverVersion: '1.0.0'

where 'MyDevice' is the name of the device and
VendorDriverDescription and
VendorDriverVersion are as defined in your
adaptor class’ getDriverDescription and
getDriverVersion methods.

To clean up after this step, delete and clear the
object.

 Specifying Device Driver Identification Information Test Procedure

8-9

Test Procedures Expected Results
Run the following command:

vidObj = videoinput
 ('AdaptorName');
src = getselectedsource(vid);
get(src)

The device-specific properties like Brightness,
Exposure, etc. will be displayed along with their
values. It will be similar to:

General Settings:

Parent = [1x1 videoinput]
Selected = on
SourceName = input1
Tag =
Type = videosource

Device-specific Properties:

Brightness = -10
Contrast = 266
Exposure = 1024
ExposureMode = auto
Hue = 0
Saturation = 340
Sharpness = 40

The actual property names will be based on the
information provided by the adaptor.

To clean up after this step, delete and clear the
object.

Run the following command:

vidObj = videoinput
 ('AdaptorName');
preview(vidObj);
src = getselectedsource(vidObj);
src.PropName = Value;

where PropertyName is the name of a
property that has visible effect on the acquired
video (e.g., Brightness) and newValue is a
value different from the existing value (e.g.,
specific integer values like 10 for
Brightness).

The change in the property value should be
observable in the video running in the preview
window. Try different property values. For example,
if there is a set of properties that have dependencies
with each other, change one of them to make sure
that it gets reflected in the dependent properties. To
close the preview window, press the (x) button or
type closepreview at the command prompt.

To clean up after this step, delete and clear the
object.

8 Test Suite for Adaptor Writers

8-10

Using the Test Suite Functions and Properties

In this section...
“Test Suite Properties” on page 8-11
“Test Suite Functions” on page 8-11
“Test Suite Example” on page 8-14

Test Suite Properties
The following properties can be used in the imaqkit.AdaptorTest functions.

Property Description
AdaptorName Name of the Image Acquisition Toolbox adaptor you

are creating, as defined by the constructor.
DeviceId Device ID of the device you are testing with, as

defined by the constructor.
Format Video format used for acquisition or camera file.
DeviceName Device name of the device you are testing with, as

defined by the constructor.
VendorDriverDescription Device driver name.
VendorDriverVersion Device driver version.
EstimatedAcquisitionFrameRate Estimated frame rate.
ConciseLog Verbosity of log, with a default of false. Set to true

if you want a concise log output.

In concise mode, only the following is shown in the
log output:

• current test name
• test results

With concise mode set to false (the default), the
following is shown in the log output:

• current test name
• current test details/information
• any applicable information on how to interpret the

results
• test condition under test
• test results

Test Suite Functions
You can use these functions with the imaqkit.AdaptorTest class.

 Using the Test Suite Functions and Properties

8-11

The imaqkit.AdaptorTest class is used to create an Image Acquisition Toolbox Adaptor Test object
and to test Image Acquisition Toolbox connectivity with cameras/framegrabbers. This class is not
instantiated directly. Call imaqkit.AdaptorTest.createTest to instantiate.

Function Purpose
createTest Create imaqkit.AdaptorTest object.

For an imaqkit.AdaptorTest object called testObj,
use this syntax:
testObj = imaqkit.AdaptorTest.createTest
 (AdaptorName, DeviceId, Format,
 EstimatedAcquisitionFrameRate)

returns a test object to test a device with specified
adaptor, ID and format. AdaptorName is the name of the
adaptor to use to communicate with the device, e.g.
winvideo, gige, etc. DeviceId is the numeric ID of the
device, and is often 1. Format is the video format to
acquire images in. To see more about DeviceId and
available formats, use imaqhwinfo.

See the example in the next section for an example of
using the createTest function.

runAllAutomatedTests For automated testing, run all automated tests. This runs
all test points.

For an imaqkit.AdaptorTest object called testObj,
use this syntax:

testObj.runAllAutomatedTests
runAutomatedObjectCreation
 AndPreviewTest

For automated testing, run automated object creation and
preview test. This test creates an object with the specified
parameters and then previews it. It also checks that the
preview can be stopped and then closed.

For an imaqkit.AdaptorTest object called testObj,
use this syntax:
testObj.runAutomatedObjectCreationAndPreviewTest

runAutomatedBasic
 AcquisitionTest

For automated testing, run automated acquisition test.
This test acquires and montages 10 frames. It also checks
that continuous image acquisition can be stopped.

For an imaqkit.AdaptorTest object called testObj,
use this syntax:
testObj.runAutomatedBasicAcquisitionTest

8 Test Suite for Adaptor Writers

8-12

Function Purpose
runAutomatedROITest For automated testing, run automated region of interest

test. The test sweeps the ROI during preview. It divides
the frame into four sections and previews each section
separately. This test checks setting the Region of Interest
to a value different from the default value and then
acquiring data. It also checks setting ROI values using X
and Y offsets.

For an imaqkit.AdaptorTest object called testObj,
use this syntax:

testObj.runAutomatedROITest
runAutomatedRepeated
 AcquisitionTest

For automated testing, run automated repeated
acquisition test. This test does 25 acquisitions from the
same device.

For an imaqkit.AdaptorTest object called testObj,
use this syntax:
testObj.runAutomatedRepeatedAcquisitionTest

runAutomatedImmediate
 TriggerTest

For automated testing, run automated trigger test for
immediate triggering. This test checks acquiring images
in Immediate trigger mode. It checks the number of
acquired frames for acquisition with immediate trigger.

For an imaqkit.AdaptorTest object called testObj,
use this syntax:
testObj.runAutomatedImmediateTriggerTest

runAutomatedManualTrigger
 Test

For automated testing, run automated trigger test for
manual triggering. This test checks acquiring images in
Manual trigger mode. It checks that frames are not
acquired when the imaqkit.AdaptorTest object is
waiting for a trigger, as well as number of acquired
frames (once triggered).

For an imaqkit.AdaptorTest object called testObj,
use this syntax:
testObj.runAutomatedManualTriggerTest

runAutomatedHardware
 TriggerTest

For automated testing, run automated trigger test for
hardware triggering. This test checks the
imaqkit.AdaptorTest object in hardware trigger
mode. It checks that frames are not acquired when the
object is waiting for a trigger. To test triggering using
hardware trigger, refer to Image Acquisition Toolbox
documentation.

For an imaqkit.AdaptorTest object called testObj,
use this syntax:
testObj.runAutomatedHardwareTriggerTest

 Using the Test Suite Functions and Properties

8-13

Function Purpose
runInteractiveDevice
 PropertiesTest

For interactive testing, run interactive device properties
test. This tests device-specific property values in the
Property Inspector. This test checks device properties
interactively. by opening a preview window and the
property inspector. You can modify the properties from
the property inspector and observe the changes in the
preview window.

For an imaqkit.AdaptorTest object called testObj,
use this syntax:
testObj.runInteractiveDevicePropertiesTest

runInteractiveMultiple
 DeviceAcquisitionTest

For interactive testing, run interactive multiple device
acquisition test. This test checks simultaneous acquisition
from two devices. Before running this test, at least two
devices should be connected and their Device ID and
Format information obtained using imaqhwinfo.

For an imaqkit.AdaptorTest object called testObj,
use this syntax:
testObj.runInteractiveMultipleDeviceAcquisition
 Test(testObj, deviceId1, deviceFormat1,
 deviceId2, deviceFormat2)

methods Get the list of tests that can be run.

For an imaqkit.AdaptorTest object called testObj,
use this syntax:

methods(testObj)

Test Suite Example
This example shows the basic workflow of creating and running a test using some of the functions
outlined in the previous section.

Get installed hardware information recognizable using the winvideo adaptor.

info = imaqhwinfo('winvideo');

Identify the Device IDs.

info.DeviceIDs

Get information about available formats for the camera under test identified in the last step. If it is
the first camera, use DeviceId of 1.

info.DeviceInfo(1).SupportedFormats

Choose a format, for example MJPG_800x600, and create the test object, with an estimated frame
rate of 15.
testObj = imaqkit.AdaptorTest.createTest('winvideo', 1, 'MJPG_800x600', 15);

8 Test Suite for Adaptor Writers

8-14

By default, tests create verbose logs. To run tests with concise logs set the ConciseLog property to
true and then run tests.

testObj.ConciseLog = true;

To run individual tests, call specific test functions, such as:

testObj.runObjectCreationAndPreviewTest;
testObj.runInteractiveDevicePropertiesTest;

Run all automated tests.

testObj.runAllAutomatedTests;

 Using the Test Suite Functions and Properties

8-15

	Getting Started
	Custom Adaptors
	What Knowledge Is Required?

	Creating an Adaptor
	Staged Development Model

	Looking at the Demo Adaptor
	Finding the Demo Adaptor Source Files
	Viewing the Demo Adaptor Source Files
	Setting Breakpoints
	Building the Demo Adaptor
	Registering an Adaptor with the Toolbox
	Running the Demo Adaptor

	Setting Up Your Build Environment
	Setting up a Build Environment on Windows Systems
	Required Header Files and Libraries
	Using Environment Variables
	Creating an Adaptor Project Using Microsoft Visual C++
	Specifying Header File Locations
	Specifying Libraries and Library Paths
	Configuring Other Project Parameters

	Setting up a Build Environment on Linux and Macintosh Systems
	Required Libraries and Include Files for Adaptor Development
	Creating a Makefile Based on the Demo Adaptor Makefile

	Providing Hardware Information
	Using Adaptor Exported Functions
	Creating a Stub Adaptor
	Performing Adaptor and Device SDK Initialization
	Example

	Specifying Device and Format Information
	Using Objects to Store Device and Format Information
	Suggested Algorithm
	Storing Device Information
	Storing Format Information
	Example: Providing Device and Format Information

	Defining Classes to Hold Device-Specific Information
	Defining a Device or Format Information Class
	Storing Adaptor Data

	Unloading Your Adaptor DLL
	Example

	Returning Warnings and Errors to the MATLAB Command Line

	Defining Your Adaptor Class
	Defining Your Adaptor Class
	Using IAdaptor Abstract Class Virtual Functions
	Creating Stub Implementation of Your Adaptor Class
	Identifying Video Sources
	Suggested Algorithm

	Instantiating an Adaptor Object
	Suggested Algorithm
	Implementing Your Adaptor Class Constructor
	Implementing Your Adaptor Class Destructor

	Acquiring Image Data
	Acquiring Image Data
	User Scenario
	Triggering
	Overview of Virtual Functions Used to Acquire Data

	Specifying the Format of the Image Data
	Specifying Image Dimensions
	Specifying Frame Type

	Opening and Closing Connection with a Device
	Suggested Algorithm for openDevice()
	Suggested Algorithm for closeDevice()

	Starting and Stopping Image Acquisition
	Suggested Algorithm for startCapture()
	Suggested Algorithm for stopCapture()

	Implementing the Acquisition Thread Function
	User Scenario
	Suggested Algorithm
	Example

	Supporting ROIs
	Implementing Software ROI
	Implementing Hardware ROI

	Supporting Hardware Triggers
	Example

	Using Critical Sections
	Understanding Critical Sections
	Example: Using a Critical Section

	Specifying Device Driver Identification Information
	User Scenario
	Example

	Defining Device-Specific Properties
	Defining Device-Specific Properties
	User Scenario
	Suggested Algorithm

	Creating Device Properties
	Selecting the Property Creation Function
	Creating Property Help
	Example getDeviceAttributes() Function

	Defining Hardware Trigger Configurations
	Implementing Get and Set Support for Device-Specific Properties
	Setting Up Get Listeners in Your Adaptor
	Setting Up Set Listeners in Your Adaptor

	Storing Adaptor Information in an IMDF File
	Using the IMDF Markup Language
	User Scenario
	Elements of the IMDF Markup Language

	Creating an IMDF File: Toplevel Elements
	Specifying Help in an IMDF File
	User Scenario: Viewing Property Help
	Creating AdaptorHelp Nodes

	Specifying Device Information
	Example: Device Node

	Specifying Property Information
	Specifying Property Element Attributes

	Specifying Format Information
	Specifying Hardware Trigger Information
	Specifying Trigger Sources
	Specifying Trigger Conditions

	Specifying Video Sources
	Defining and Including Sections

	Test Suite for Adaptor Writers
	Testing Adaptors or Hardware
	Creating a Stub Adaptor Test Procedure
	Specifying Format of Image Data Test Procedure
	Implementing the Acquisition Thread Function Test Procedure
	Supporting ROIs Test Procedure
	Specifying Device Driver Identification Information Test Procedure
	Using the Test Suite Functions and Properties
	Test Suite Properties
	Test Suite Functions
	Test Suite Example

